深度学习在工业缺陷检测应用中的一些思考

深度学习在安防、智慧城市、自动驾驶等领域已经落实应用,在工业缺陷检测方面,深度学习也是一个必然趋势,但仍然有很长一段路要走,这篇博文记录博主关于深度学习在工业缺陷检测应用中的一些思考。

工业领域与其他领域的区别

这里的工业领域独指工业制造相关,特别是工业缺陷检测相关方面的,其他领域则包含上述的安防、智慧城市、自动驾驶等。从模型、数据、部署三方面来看,这两者的主要区别在于:

(1)、在视觉应用方面,主要包括“目标分类”“目标检测”“目标分割”“目标跟踪”等,工业缺陷领域绝大部分情况只需模型输出OK或NG,也就说工业缺陷领域可以划分为“目标分类”,而其他领域可能都会涉及。目前很多视觉比赛也会涉及工业缺陷检测方面,这些比赛以计算机视觉领域常用的指标来判别模型的优劣,如mAP,recall等等,把其看成“目标检测”或者“目标分割”问题,博主认为这是脱离了实际的工业应用,这两者的指标明显不太一样,举个例子,某些缺陷检测对弱小的、不显眼的可以判别为OK品,模型应更加关注整体。

(2)、在工业缺陷领域,刚开始生产的零部件可能没那么多NG品,更多的是OK品,这就注定了工业领域是无法获取足够多的数据的,特别是NG品,而安防、自动驾驶等则可获取大量的数据。

(3)、在实际应用中,工业生产拍照通常只有一次,一次必须出结果,而在安防、自动驾驶等,比如人脸识别,如果某一帧识别失败,还可以继续抓拍识别。

深度学习在缺陷检测应用中出路

由于工业缺陷领域的特殊性,深度学习要想在此领域更近一步,博主认为需要解决以下几个问题:

(1)、用前期训练完成的模型进行分析发现出现误判,能否保持前期训练的模型,利用新数据追加训练模型,即数据增量学习(Data Incremental Deep Learning);

(2)、通常数据量要与模型容量保持一致,工业产品千差万别,数据迥异,模型(尺寸)如何根据数据自适应(分类、检测、分割等)?小数据小模型,大数据大模型(动态模型Dynamic Convolutional Neural Network);

(3)、实际过程中NG样品很少或者没有时,如何利用深度学习来检测OK/NG(Anomaly Detection Or One Class CNN)?

(4)、能否根据图片本身OK/NG的标注,自动抽取差异部分,减少标注成本?(Fine-Gained Image Classification)

总结

计算机视觉那一边不断刷新各种比赛数据,“目标分类”“目标检测”“目标分割”“目标跟踪”已经杀成一片红海,机器视觉这一边深度学习还有很多路要走,期望更多的学者和研究员能关注深度学习在工业领域的应用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值