笔记速查:线性常系数微分方程(*)

本文主要介绍了二阶常系数线性微分方程的基础概念及其解法,包括齐次与非齐次方程的求解方法,并讨论了特征根的三种情形。此外还介绍了拉氏变换的基本概念及其在线性微分方程求解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

二阶常系数线性微分方程

定义

齐次方程解法

拉氏变换基础知识

定义

典型函数的拉氏变换

性质

反变换


note:

通解+特解

拉氏变换

状态空间 /矩阵方法


二阶常系数线性微分方程

资源:二阶常系数线性微分方程的解法

定义

y''+py'+qy = f(x) // p, q 为常数

  • f(x)= 0  二阶常系数齐次线性微分方程
  • f(x)≠ 0  二阶常系数非齐次线性微分方程

补充性质:

齐次方程解法

特征根三种情况:

1.  Δ > 0  两个相异实根

 

2. Δ = 0  两个相等实根

 

3. Δ < 0  一对共轭复根



拉氏变换基础知识

资源:拉普拉斯变换及线性微分方程求解

  • 定义

  • 典型函数的拉氏变换

 

 


  • 性质

1. 线性性质

2. 微分性质

第二项开始,s的次数减少至0,f(0) 阶数增加至 n-1 

3.积分

(待补充)

4.中值定理

  • 反变换

常用部分分式法 

例题:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值