神经网络的量子化假设

(mnist0,2)---81*30*2---(1,0)(0,1)

用神经网络分类0和2得到了12条特征谱线,表明这个几何体有12个能级。这个几何体到底是什么?

 

假如有一群粒子,给这群运动的粒子拍照片,拍出来就像mnist的数据集一样,比如有一瞬间运动轨迹看起来就像“0”。现在用一张一张的图片表达这群粒子的运动,就像放电影一样,那这些粒子的运动当然不可能是连续的。也就是运动是量子化的。

因此有理由对这种有量子化特征的运动微粒适用薛定谔方程,

因为这个网络共有12个特征谱线也就是有12个本征能级,因此神经网络的权重W表征的就是E,

网络收敛最终得到的:输入*偏差

是波函数的本征函数。

输入*权重并不断反向传导的过程的物理意义应该就是哈密顿算符作用于波函数,表达空间和时间对粒子运动的约束

也就是假设神经网络收敛过程就是通过旋转操作寻找本征能级的过程。

如果假设这是一个实数域的粒子,则Ψ就是粒子密度,而不是Ψ*Ψ。EΨ的意义就是能量为E的粒子存在的概率。这解释了为什么迭代次数越大平均分类准确率越大的现象。

如果运动粒子可以用薛定谔方程描述,那用薛定谔方程描述的如果不是粒子会是什么呢?

(mnist0,2)---81*30*2---(1,0)(0,1)的特征光谱

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值