分数模

分数模

最近遇到要计算分数模的问题(1/9*(5-8*6)%10  and  1/5 mod 18 ),然后搜索了很多资料,暂时解决了我的问题,记录如下:

首先要先了解一下正负数求模问题,因为负数求模和正数求模过程不一致

其次要知道一些模运算规则,因为一些模运算规则可以快速节省求解时间

最后就是求模的过程

1、带正负的模运算

正数的模运算和取余运算一致,但是负数的求模运算则要带符号,如下:

7 mod 4 = 3(商 = 1 或 2,1<2,取商=1)

-7 mod 4 = 1(商 = -1 或 -2,-2<-1,取商=-2)

7 mod -4 = -1(商 = -1或-2,-2<-1,取商=-2)

-7 mod -4 = -3(商 = 1或2,1<2,取商=1)

2、模运算相关规则

转载链接:http://www.hankcs.com/program/cpp/poj-1995-raising-modulo-numbers.html

基本性质:

  1. 若p|(a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)

  2. (a % p)=(b % p)意味a≡b (% p)

  3. 对称性:a≡b (% p)等价于b≡a (% p)

  4. 传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)

模运算与基本四则运算有些相似,但是除法例外。其规则如下:

(a + b) % p = (a % p + b % p) % p (1)

(a – b) % p = (a % p – b % p) % p (2)

(a * b) % p = (a % p * b % p) % p (3)

(a^b) % p = ((a % p)^b) % p (4)

结合律:

((a+b) % p + c) % p = (a + (b+c) % p) % p (5)

((a*b) % p * c)% p = (a * (b*c) % p) % p (6)

交换律:

(a + b) % p = (b+a) % p (7)

(a * b) % p = (b * a) % p (8)

分配律:

((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p (9)

重要定理

若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);(10)

若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);(11)

若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a – c) ≡ (b – d) (%p),

(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); (12)

note:

≡ (同余号,也是恒等号)

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余   记作 a ≡ b (mod m)   读作a同余于b模m,或读作a与b关于模m同余。   比如 26 ≡ 14 (mod 12)

 

3、模运算定义

但是我这里并没有用到所谓的模运算定义(x=a/b mod n   等同于 bx=a + nk)

根据模运算性质,当a与n互素时,(axb)≡(axc)(mod n)   等同于 b ≡ c ( mod n)。故有:

1)1/5 (mod 18 )

改成  n≡1/5 (mod 18)

变换成  5n ≡ 1 (mod 18)

继续变换成 5n mod 18= 1

令 n = 1,2,3,4,...

当n=11 时, 5n mod =18 ,因此 1/5 mod 18 =11

2)1/9 (mod 10)

改成 n ≡ 1/9(mod 10)

变换成 9n ≡ 1(mod 10)

继续变换成 9n mod 10 = 1

令 n =1,2,3,...

当n=9时,9n mod 10 = 1,因此1/9 (mod 10)=9

3)1/9(5-8*6)%10

根据模运算(3),原式可得:

((1/9%10)(-43%10))%10

=(9*(-3))%10

=3

注:(9*(-3))%10

值为-3,模为3(区别正负数取模)

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值