从晶体管特性曲线看饱和问题(Z)

作者: tuwen 于 2005-1-16 20:18:00 发布:

从晶体管特性曲线看饱和问题
我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。

借用杨真人提供的那幅某晶体管的输出特性曲线。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。

如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:

                Ic = (V-Vce)/R   

在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖
说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负
载线的交点就是该晶体管在不同基极电流下的工作点。见下图:
从晶体管特性曲线看饱和问题(Z) - keendawn - keendawn的博客
 
 
图中假定电源电压为4V,绿色的斜线是负载电阻为80欧姆的负载线,V/R=50MA,图中标出了Ib分别等于0.1、0.2、0.3、0.4、0.6、1.0mA的
工作点A、B、C、D、E、F。据此在右侧作出了Ic与Ib的关系曲线。根据这个曲线,就比较清楚地看出“饱和”的含义了。曲线的绿色段是线
性放大区,Ic随Ib的增大几乎成线性地快速上升,可以看出β值约为200。兰色段开始变弯曲,斜率逐渐变小。红色段就几乎变成水平了,这就是
“饱和”。实际上,饱和是一个渐变的过程,兰色段也可以认为是初始进入饱和的区段。在实际工作中,常用Ib*β=V/R作为判断临界饱和的条
件。在图中就是假想绿色段继续向上延伸,与Ic=50MA的水平线相交,交点对应的Ib值就是临界饱和的Ib值。图中可见该值约为0.25mA。

由图可见,根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱
和程度就越深。

图中还画出了负载电阻为200欧姆时的负载线。可以看出,对应于Ib=0.1mA,负载电阻为80欧姆时,晶体管是处于线性放大区,而负载电
阻200欧姆时,已经接近进入饱和区了。负载电阻由大到小变化,负载线以Vce=4.0为圆心呈扇状向上展开。负载电阻越小,进入饱和状态所需要
的Ib值就越大,饱和状态下的C-E压降也越大。在负载电阻特别小的电路,例如高频谐振放大器,集电极负载是电感线圈,直流电阻接近0,负
载线几乎成90度向上伸展(如图中的红色负载线)。这样的电路中,晶体管直到烧毁了也进入不了饱和状态。

以上所说的“负载线”,都是指直流静态负载线;“饱和”都是指直流静态饱和。

我认为,大多数电子技术人员,都是晶体管的使用者,只要了解它的外部特性就行了。除非是研制、生产晶体管的科技人员,对于内部的工作原
理,没有必要去深究。个人看法,不一定对。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值