离散Laplace-Beltrami 算子

本文介绍了Laplace算子在图像处理中的作用,探讨了Laplace-Beltrami算子作为在黎曼流形上的微分算子,如何在三维模型分析中发挥作用。重点讲解了离散LBO的均值和余切形式,以及它们在保持对称性、局部性、线性和正权值条件下的差异和适用场景。
摘要由CSDN通过智能技术生成

1、Laplace算子\Delta f概念及在图像处理中的应用:

\Delta f=\frac{\partial^2 f}{\partial x1^2}+\frac{\partial^2 f}{\partial x2^2}+...+\frac{\partial^2 f}{\partial xn^2}

=\begin{bmatrix} \frac{\partial }{\partial x1} \\ \frac{\partial }{\partial x2} \\ ... \\ \frac{\partial }{\partial xn} \end{bmatrix} \cdot \begin{bmatrix}\frac{\partial f}{\partial x1} \\\frac{\partial f}{\partial x2} \\ ... \\\frac{\partial f}{\partial xn} \end{bmatrix}=0

在微分几何中,曲面被描述为场,而网格又是离散化的曲面,可以看成是包含了有限个点的离散场,网格上的每个点对其周围的邻居点都是有影响。拉普拉斯方程式\Delta f是一个二阶偏微分方程,曲面的二阶微分描述了曲面的曲率,上述公式相当于寻找曲线的拐点(也就是连续曲线的凹弧与凸弧的分界点)。

拉普拉斯算子定义为梯度散度。梯度衡量的是函数变化的趋势、方向,在三维空间中,每点都有指向不同方向的梯度向量,在极大值点处,该点的所有方向都是向内的;散度是标量,定义为某一点处的函数值与领域相比的大小关系(极值点的凹凸特征),描述沿区域内向量显示的聚/散表征,可以看做在此点处向内的箭头比较多还是向外的箭头比较多。

在灰度图像中,拉普拉斯算子就是x, y两个方向的二阶偏导数求和 (即\Delta f有二维解)。左图为图像灰度的变化曲线,可以理解为灰度变化越陡的地方,就是图像边缘。对变化进行二次求导,在某点处一阶导为0,两端的二阶导相反,可以理解为变化最为陡峭的地方。


2、Laplace-Beltrami 算子(LBO,Lap

  • 7
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值