laplace-beltrami operator 是 laplace operator在riemann manifolds上的拓展. 至于他们两到底有什么区别和联系,请看[2]中的一段话:
可以看到, laplace-beltrami operator与普通laplace operator的区别就在于一个metric G,那么这个metric G究竟是个什么东西?
注意这里的局部坐标系底面的两个轴方向是由
Xu,Xv
决定的, 它们是由向量[1;0]和[0;1]在
dx
映射下也就是在
J
映射下变化得到, 注意它们都位于该点的切平面内, 现在的问题是, 我们只知道
这样我们就引入了First fundamental form
所以,对于局部坐标系下的两个向量 x,y 相乘, 他们的积应该表示为如上所示.
所以矩阵
这里我们看下[5]中关于metric的定义
所以G也就是[1]中所讲的
也是[4]中所讲的
以及[3]中所讲的
注意这里的
G
其实就是
这里我想多说一下导数的问题, ∀u∈Rn , 那么能找到映射后的一点 f(u)∈Rm , 对于普通的函数求导, 我们有一阶泰勒展开 f(u+du)=f(u)+∇fTdu ,这里 u=⎛⎝⎜⎜u1⋮un⎞⎠⎟⎟,du=⎛⎝⎜⎜du1⋮dun⎞⎠⎟⎟,∇f=⎛⎝⎜⎜f11⋮fn1⋯⋮⋯fm1⋮fnm⎞⎠⎟⎟
如果把这种情况扩展到Riemann几何上那么就需要把普通意义下的向量映射到该点的切平面内, 而这个映射就是
J=df
所以
du
拓展为
Jdu
,
∇f
拓展为
J∇f
就得到我们想到的了.
关于[2]中所描述的 da=g√du1…dun , 我们先看下[4]中的二维下的情况
运用到三维及以上就得证, 其中 g√ 在三维情况下就是变化的体积
reference:
[1]Laplace-Beltrami operator Diffusion geometry
[2]Conformal Mapping with as Uniform as Possible Conformal Factor
[3]Computing discrete minimal surfaces and their conjugates
[4]First fundamental form
[5]Elementary Differential Geometry
关于离散的请好好看下以下资料
http://webcourse.cs.technion.ac.il/236861/Winter2013-2014/ho/WCFiles/laplace_beltrami.pdf
https://igl.ethz.ch/projects/deformation-survey/eg09_tutorial_slides.pdf
https://people.eecs.berkeley.edu/~jrs/meshpapers/MeyerDesbrunSchroderBarr.pdf
http://ac.els-cdn.com/S0097849309000272/1-s2.0-S0097849309000272-main.pdf?_tid=665c5518-d8b9-11e6-84f6-00000aab0f6c&acdnat=1484220328_c210ff0d8bcd2b9277aebb981df8280d