Laplace-Beltrami operator的理解

laplace-beltrami operator 是 laplace operator在riemann manifolds上的拓展. 至于他们两到底有什么区别和联系,请看[2]中的一段话:

这里写图片描述
这里写图片描述

可以看到, laplace-beltrami operator与普通laplace operator的区别就在于一个metric G,那么这个metric G究竟是个什么东西?

这里写图片描述

注意这里的局部坐标系底面的两个轴方向是由 Xu,Xv 决定的, 它们是由向量[1;0]和[0;1]在 dx 映射下也就是在 J 映射下变化得到, 注意它们都位于该点的切平面内, 现在的问题是, 我们只知道Xu,Xv在世界坐标系下的坐标, 那么对切平面内以 Xu,Xv 为基(即局部坐标)的向量乘法, 我们该如何求其结果? 或者换种思考方式, 在M上的某点的 uOv 中的坐标系中,向量 a⃗  , b⃗  ,那么这两个向量经过 J 映射后的向量Ja⃗ , Jb⃗  (在该点的切平面中)的点乘为多少?

这样我们就引入了First fundamental form

这里写图片描述

所以,对于局部坐标系下的两个向量 x,y 相乘, 他们的积应该表示为如上所示.

所以矩阵

(EFFG)
就是我们引入的metric G.

这里我们看下[5]中关于metric的定义
这里写图片描述
这里写图片描述

所以G也就是[1]中所讲的

这里写图片描述

也是[4]中所讲的
这里写图片描述

以及[3]中所讲的
这里写图片描述

注意这里的 G 其实就是JTJ. 在[2]中有所提到
这里写图片描述

这里我想多说一下导数的问题, uRn , 那么能找到映射后的一点 f(u)Rm , 对于普通的函数求导, 我们有一阶泰勒展开 f(u+du)=f(u)+fTdu ,这里 u=u1un,du=du1dun,f=f11fn1fm1fnm

如果把这种情况扩展到Riemann几何上那么就需要把普通意义下的向量映射到该点的切平面内, 而这个映射就是 J=df
所以 du 拓展为 Jdu , f 拓展为 Jf 就得到我们想到的了.

关于[2]中所描述的 da=gdu1dun , 我们先看下[4]中的二维下的情况

这里写图片描述

运用到三维及以上就得证, 其中 g 在三维情况下就是变化的体积

reference:
[1]Laplace-Beltrami operator Diffusion geometry
[2]Conformal Mapping with as Uniform as Possible Conformal Factor
[3]Computing discrete minimal surfaces and their conjugates
[4]First fundamental form
[5]Elementary Differential Geometry

关于离散的请好好看下以下资料
http://webcourse.cs.technion.ac.il/236861/Winter2013-2014/ho/WCFiles/laplace_beltrami.pdf
https://igl.ethz.ch/projects/deformation-survey/eg09_tutorial_slides.pdf
https://people.eecs.berkeley.edu/~jrs/meshpapers/MeyerDesbrunSchroderBarr.pdf
http://ac.els-cdn.com/S0097849309000272/1-s2.0-S0097849309000272-main.pdf?_tid=665c5518-d8b9-11e6-84f6-00000aab0f6c&acdnat=1484220328_c210ff0d8bcd2b9277aebb981df8280d

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值