安全强化学习从人类反馈中进行约束价值对齐:safe-rlhf 开源项目指南

安全强化学习从人类反馈中进行约束价值对齐:safe-rlhf 开源项目指南

safe-rlhf Safe RLHF: Constrained Value Alignment via Safe Reinforcement Learning from Human Feedback 项目地址: https://gitcode.com/gh_mirrors/sa/safe-rlhf

项目介绍

安全强化学习从人类反馈中进行约束价值对齐(Safe RLHF) 是由北京大学PKU-Alignment团队开发的一个高度模块化的开放源码框架,专注于提供训练数据和可重复的研究代码流程,特别是通过安全的RLHF方法进行的约束对齐大型语言模型研究。该框架支持SFT(监督预训练)、RLHF(强化学习从人类反馈)以及安全RLHF训练,适用于包括LLaMA、OPT、Baichuan等在内的流行预训练模型。此外,它还提供了一个大规模的人工标注数据集,可达1百万对样本,覆盖了有益性和无害性偏好,以支持可复现的RLHF研究。

项目快速启动

要快速启动并运行safe-rlhf项目,首先确保你的系统上安装了Python环境,并推荐使用Python 3.8及以上版本。接下来,按照以下步骤操作:

步骤一:克隆项目

git clone https://github.com/PKU-Alignment/safe-rlhf.git
cd safe-rlhf

步骤二:安装依赖

使用pip安装必要的依赖项:

pip install -r requirements.txt

步骤三:运行示例

项目提供了示例脚本进行快速体验,具体命令可能因项目的实际结构而异,但通常会有一个入门级的运行命令示例。假设项目内存在一个用于演示的基本脚本,你可以这样执行:

python scripts/start_example.py

请注意,实际的启动脚本和参数需要参照项目的最新文档或者scripts目录下的具体文件命名和说明。

应用案例和最佳实践

在应用safe-rlhf时,最佳实践包括:

  • 个性化数据集整合:利用框架的定制化参数和数据集支持,结合特定领域知识创建个性化的训练数据。
  • 安全性指标监控:在训练过程中,使用多尺度的指标验证安全性约束,比如BIG-bench和GPT-4评价标准。
  • 逐步微调:遵循项目提供的多轮细化训练方案,逐步优化模型的性能与安全性。

案例示例可以参考项目文档中的“交互式CLI示例”和“互动竞技场”,了解如何在真实的对话场景中测试模型的安全响应能力。

典型生态项目

safe-rlhf框架不仅独立强大,而且是大型生态系统的一部分,其中包括但不限于:

  • PKU-SafeRLHF 数据集:此项目的核心支撑,提供超过30万个例子的人工标签数据,用于训练具有约束价值对齐的模型,可在Hugging Face找到。
  • 模型系列:如Beaver-7B的各种版本及配套的奖励模型和成本模型检查点,这些模型体现了Safe RLHF训练的成果,也在Hugging Face上公开获取。

这个框架鼓励社区贡献和与其他开源生态项目的集成,如通过DeepSpeed、加速器和其他机器学习库的兼容性,进一步扩展其应用范围。


以上内容构建了一个基本的指导框架,详细实现和配置可能会有所变化,务必参考项目最新的官方文档来获得确切的指引。

safe-rlhf Safe RLHF: Constrained Value Alignment via Safe Reinforcement Learning from Human Feedback 项目地址: https://gitcode.com/gh_mirrors/sa/safe-rlhf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌芬维Maisie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值