引言:AI安全的现实挑战
根据MITRE 2023年AI安全报告,全球62%的企业在部署大模型时遭遇过安全事件(如数据泄露、模型滥用),而 欧盟《AI法案》 明确要求高风险AI系统必须通过全生命周期安全管理认证。本文将基于行业权威研究和开源工具,探讨SDL(安全开发生命周期)与大模型结合的技术路径。
一、SDL赋能大模型安全的核心逻辑
1. 传统安全与AI安全的差异
| 维度 |
传统软件安全 |
大模型安全 |
依据来源 |
| 风险类型 |
静态漏洞(如缓冲区溢出) |
动态滥用(如提示注入、数据泄露) |
NIST AI 100-1报告(2023) |
| 防御手段 |
代码审计、WAF(Web应用防火墙) |

订阅专栏 解锁全文
303

被折叠的 条评论
为什么被折叠?



