EfficientSAM 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/ef/EfficientSAM
1. 项目的目录结构及介绍
EfficientSAM 项目的目录结构如下:
EfficientSAM/
├── README.md
├── requirements.txt
├── models/
│ ├── efficientsam_s_gpu.jit
│ └── efficientsam_ti_gpu.jit
├── weights/
│ └── ...
├── EfficientSAM_example.py
├── config/
│ └── config.yaml
└── notebooks/
└── EfficientSAM_notebook.ipynb
目录结构介绍
README.md
: 项目介绍文档。requirements.txt
: 项目依赖文件。models/
: 存放模型文件的目录。efficientsam_s_gpu.jit
: 大模型文件。efficientsam_ti_gpu.jit
: 小模型文件。
weights/
: 存放模型权重文件的目录。EfficientSAM_example.py
: 示例脚本,展示如何加载和使用模型。config/
: 配置文件目录。config.yaml
: 配置文件。
notebooks/
: Jupyter Notebook 示例目录。EfficientSAM_notebook.ipynb
: Jupyter Notebook 示例。
2. 项目的启动文件介绍
项目的启动文件主要是 EfficientSAM_example.py
和 notebooks/EfficientSAM_notebook.ipynb
。
EfficientSAM_example.py
该脚本展示了如何加载模型并进行实例分割。主要步骤包括:
- 导入必要的库。
- 加载模型文件。
- 使用模型进行实例分割。
示例代码片段:
import torch
# 加载模型
efficientsam = torch.jit.load('models/efficientsam_s_gpu.jit')
# 使用模型进行实例分割
# ...
notebooks/EfficientSAM_notebook.ipynb
该 Jupyter Notebook 提供了交互式的示例,展示了如何使用 EfficientSAM 进行实例分割。用户可以通过运行 Notebook 中的代码块来体验模型的功能。
3. 项目的配置文件介绍
项目的配置文件位于 config/config.yaml
。该文件包含了模型的各种配置参数,如模型路径、权重路径、输入输出配置等。
配置文件示例
model_path: 'models/efficientsam_s_gpu.jit'
weights_path: 'weights/efficientsam_weights.pth'
input_size: 512
output_size: 512
配置文件说明
model_path
: 模型文件路径。weights_path
: 模型权重文件路径。input_size
: 输入图像的大小。output_size
: 输出图像的大小。
通过修改配置文件,用户可以调整模型的行为和输入输出参数。
以上是 EfficientSAM 项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助用户更好地理解和使用该项目。