非刚体神经辐射场:动态场景的重建与新视图合成

非刚体神经辐射场:动态场景的重建与新视图合成

nonrigid_nerf Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'. 项目地址: https://gitcode.com/gh_mirrors/no/nonrigid_nerf

项目简介

非刚体神经辐射场(Non-Rigid Neural Radiance Fields, NR-NeRF)是一个创新的开源项目,它扩展了业界领先的静态场景重建方法——NeRF,使其能处理动态、变形或非刚性场景的高保真度外观和几何重构。这个项目基于预印本论文和技术项目页面,包括补充视频供您探索。

项目预告图

技术分析

NR-NeRF的核心在于其对NeRF的扩展,通过引入时间条件下的变量来处理非刚性运动。它利用深度学习的力量,从单目视频中推断出场景的三维结构和光照信息。该方法结合了多视图几何和神经网络的表示能力,能够估计场景在不同时间点的状态,并生成全新视角的图像。

应用场景

  1. 电影和游戏制作:NR-NeRF能让艺术家以实时的方式创建和编辑动态场景,极大地提高了内容创作的效率。
  2. 虚拟现实与增强现实:通过实时的场景重构,可以提供更加沉浸式的VR和AR体验。
  3. 机器人视觉:帮助机器人理解和预测复杂环境中的动态物体行为。

项目特点

  1. 易用性:项目提供了一个从图像到固定视角重渲染的完整示例,只需简单几步即可运行。
  2. 兼容性:支持视频文件输入,可进行镜头畸变校正和图像去畸变处理。
  3. 拓展性:多GPU支持、自动继续训练等功能,方便快速进行大规模实验。
  4. 灵活性:代码允许对损失函数和相机参数进行定制,适应不同的场景需求。

如何开始

首先克隆仓库并设置Conda环境,然后安装必要的依赖。使用preprocess.py确定相机参数,train.py进行模型训练,最后通过free_viewpoint_rendering.py生成新的视点渲染结果。为了自定义场景,您可能需要编写特定的数据加载和相机参数估计程序,或者采用提供的一些参考实现。

NR-NeRF为动态场景的重建开辟了新的可能性,它的强大功能和直观的工作流程使得研究者和开发者都能轻松上手,进一步推动了计算机视觉和图形学的发展。现在就加入NR-NeRF的世界,开启您的动态场景探索之旅吧!

nonrigid_nerf Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'. 项目地址: https://gitcode.com/gh_mirrors/no/nonrigid_nerf

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚婕妹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值