推荐:UCell——稳定且可扩展的单细胞基因特征评分工具
UCellGene set scoring for single-cell data项目地址:https://gitcode.com/gh_mirrors/uc/UCell
项目介绍
在生物信息学领域,UCell
是一个专为单细胞数据分析设计的R包,其核心功能是基于Mann-Whitney U统计量进行基因特征评分。UCell
能够对大规模数据集(超过10万个细胞)进行快速而稳健的处理,并且与其他稳健方法相比,它所需的计算时间和内存较少,这使得处理大型数据集成为可能。
项目技术分析
UCell
的核心算法采用非参数的Mann-Whitney U测试,它能有效地评估基因签名在不同细胞群体中的表达差异,而不受数据集大小和异质性的影响。此外,新版本允许指定正负基因集合,从而提供了更灵活的评分策略。通过这种方式,可以计算出一个综合得分,即UCell分数
,它考虑了正向和负向基因集的贡献。
应用场景
UCell
广泛适用于任何细胞与基因矩阵的数据,特别适合于单细胞转录组学研究。例如:
- 对比不同细胞类型或状态的基因表达模式,如识别肿瘤浸润淋巴细胞(TILs)的不同亚型。
- 分析疾病进程中细胞状态的变化。
- 监控药物治疗反应,确定靶点基因的激活或抑制程度。
此外,UCell
无缝集成Seurat和SingleCellExperiment对象,使得与现有工作流程的整合更加顺畅。
项目特点
- 鲁棒性:即使在大规模和复杂数据集中,也能提供稳定的评分结果。
- 高效性:较低的计算资源需求,支持处理大量细胞数据。
- 灵活性:支持设定正负基因标志,以适应不同的生物学问题。
- 易用性:提供详细的示例教程和直接与流行单细胞分析软件Seurat交互的功能。
要尝试UCell
,只需按照提供的安装指南安装包,并运行演示代码来熟悉其功能。这个强大的工具将使你的单细胞数据分析变得更加容易和精确。
# 安装UCell包
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("UCell")
# 测试安装
library(UCell)
data(sample.matrix)
gene.sets <- list(Tcell_signature = c("CD2","CD3E","CD3D"),
Myeloid_signature = c("SPI1","FCER1G","CSF1R"))
scores <- ScoreSignatures_UCell(sample.matrix, features=gene.sets)
head(scores)
对于希望深入了解UCell
特性和应用的用户,还可以参考提供的示例和教程。让我们一起探索UCell
如何助力您的科学研究吧!
使用UCell和Seurat识别人类肿瘤中不同T细胞亚型/状态
最后,请引用以下文献,以支持开发团队的工作:
UCell: robust and scalable single-cell gene signature scoring. Massimo Andreatta & Santiago J Carmona (2021) CSBJ https://doi.org/10.1016/j.csbj.2021.06.043
UCellGene set scoring for single-cell data项目地址:https://gitcode.com/gh_mirrors/uc/UCell
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考