SadTalker 使用与启动教程

SadTalker 使用与启动教程

SadTalker [CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation SadTalker 项目地址: https://gitcode.com/gh_mirrors/sa/SadTalker

1. 项目介绍

SadTalker 是一个开源项目,它通过学习真实的三维运动系数,为音频驱动的单张图像谈话面部动画提供了一种风格化的解决方案。该项目由西安交通大学和腾讯AI实验室共同开发,可以在不使用多张人脸图像的情况下,仅凭单张肖像图像和音频输入,生成具有谈话功能的头像视频。

2. 项目快速启动

在开始之前,请确保您的系统已安装以下软件:

  • Python 3.8
  • git
  • ffmpeg

以下是快速启动 SadTalker 的步骤:

首先,克隆项目仓库:

git clone https://github.com/OpenTalker/SadTalker.git
cd SadTalker

接着,创建并激活虚拟环境,并安装所需的 Python 包:

conda create -n sadtalker python=3.8
conda activate sadtalker
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
conda install ffmpeg
pip install -r requirements.txt

最后,启动本地 WebUI:

对于 Windows 用户,双击 webui.bat 文件即可。

对于 Linux 或 macOS 用户,运行以下命令:

bash webui.sh

3. 应用案例和最佳实践

SadTalker 的使用案例广泛,以下是一些最佳实践:

  • 使用默认配置生成面部动画:
python inference.py --driven_audio <audio.wav> --source_image <video.mp4 或 picture.png>
  • 生成自然全身视频,可以通过 --still 参数,并添加 enhancer 以提高生成的视频质量:
python inference.py --driven_audio <audio.wav> --source_image <video.mp4 或 picture.png> --result_dir <存储结果的文件路径> --still --preprocess full --enhancer gfpgan

更多示例和配置技巧可以在项目的最佳实践文档中找到。

4. 典型生态项目

SadTalker 的生态系统包括了多个相关的开源项目,以下是一些典型的项目:

  • Coqui TTS:一个开源的文本到语音转换库,可用于生成高质量的自然语音。
  • Deep3DFaceReconstruction:用于从单张照片中重建三维人脸的开源项目。
  • Wav2lip:一个用于准确唇同步的开源模型,可以与 SadTalker 结合使用。

通过上述介绍,用户可以开始使用 SadTalker 进行面部动画的生成和探索。

SadTalker [CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation SadTalker 项目地址: https://gitcode.com/gh_mirrors/sa/SadTalker

### SadTalker 使用教程 #### 运行环境准备 为了顺利运行SadTalker,在Linux CentOS环境下需提前准备好Python开发环境以及必要的依赖库。确保已安装Python 3.x版本,并通过pip工具来管理第三方包。 #### 安装依赖项 按照官方文档指示,先克隆仓库至本地服务器上,接着执行`requirements.txt`中的命令完成所需软件包的下载安装过程[^1]。 ```bash git clone https://github.com/your-repo/SadTalker.git cd SadTalker pip install -r requirements.txt ``` #### 执行推理脚本 利用给定的例子展示如何调用核心功能模块——即通过指定音频文件(`driven_audio`)、图像资源(`source_image`)以及其他参数选项来进行处理: ```python python inference.py \ --driven_audio /opt/source-code/SadTalker/examples/driven_audio/bus_chinese.wav \ --source_image /opt/source-code/SadTalker/examples/source_image/full_body_1.png \ --enhancer gfpgan \ --preprocess full \ --still ``` 上述指令会读取提供的声音片段和人物图片作为输入数据源,经过一系列算法运算之后输出合成后的动态影像效果。 #### API集成方案 对于希望进一步扩展应用场景的应用开发者而言,还可以考虑采用Faster-SadTalker-API接口形式实现更灵活的功能定制化服务。这允许将该技术无缝嵌入到各类网络平台当中去,比如创建基于浏览器端的文字转语音视频应用程序等[^2]。 #### 自动化部署建议 借助于预定义好的shell脚本,能够极大地方便用户快速搭建起完整的运行框架而不需要过多关注底层细节问题。特别是针对那些想要迅速开展测试工作的团队来说非常实用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋素萍Marilyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值