Neo4j LLM知识图谱构建器使用教程
项目地址:https://gitcode.com/gh_mirrors/ll/llm-graph-builder
1. 项目介绍
1.1 项目概述
neo4j-labs/llm-graph-builder
是一个开源应用程序,旨在将非结构化数据(如PDF、文档、文本、YouTube视频、网页等)转换为存储在Neo4j中的知识图谱。该项目利用大型语言模型(如OpenAI、Gemini等)从文本中提取节点、关系及其属性,并通过Langchain框架创建结构化的知识图谱。
1.2 主要功能
- 知识图谱创建:将非结构化数据转换为结构化的知识图谱。
- 自定义模式:用户可以提供自定义模式或使用现有模式生成图谱。
- 图谱可视化:在Neo4j Bloom中查看特定来源或多个来源的图谱。
- 数据交互:通过对话式查询与Neo4j数据库中的数据进行交互,并检索响应来源的元数据。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下工具:
- Docker
- Neo4j数据库(版本5.15或更高,并安装APOC插件)
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/neo4j-labs/llm-graph-builder.git
cd llm-graph-builder
2.3 配置环境变量
在项目根目录下创建一个 .env
文件,并添加你的OpenAI和Diffbot API密钥:
OPENAI_API_KEY="your-openai-key"
DIFFBOT_API_KEY="your-diffbot-key"
2.4 启动应用
使用Docker Compose启动应用:
docker-compose up --build
2.5 访问应用
应用启动后,可以通过浏览器访问 http://localhost:8000
来使用LLM知识图谱构建器。
3. 应用案例和最佳实践
3.1 案例1:企业知识管理
企业可以将内部文档、报告、会议记录等非结构化数据导入LLM知识图谱构建器,生成知识图谱,便于员工快速查找和理解相关信息。
3.2 案例2:学术研究
研究人员可以将学术论文、书籍、网页等数据导入,生成知识图谱,帮助理解研究领域的知识结构和关系。
3.3 最佳实践
- 数据预处理:在导入数据前,进行必要的预处理,如去除噪声、标准化格式等。
- 模式优化:根据具体需求,优化图谱模式,确保生成的图谱结构合理。
- 定期更新:随着数据的增长,定期更新图谱,保持数据的时效性和准确性。
4. 典型生态项目
4.1 LangChain
LangChain是一个用于构建基于语言模型的应用程序的框架,llm-graph-builder
利用LangChain的强大功能进行文本处理和图谱构建。
4.2 Neo4j Bloom
Neo4j Bloom是一个用于图谱可视化和探索的工具,llm-graph-builder
生成的图谱可以在Bloom中进行可视化查看和分析。
4.3 OpenAI API
OpenAI API提供了强大的语言模型,llm-graph-builder
使用OpenAI API进行文本分析和实体提取。
通过以上步骤,你可以快速启动并使用 neo4j-labs/llm-graph-builder
项目,将非结构化数据转换为有价值的知识图谱。