GenomeScope 使用教程
项目地址:https://gitcode.com/gh_mirrors/ge/genomescope
1. 项目介绍
GenomeScope 是一个开源软件包,用于从未组装的短读序列数据中快速分析基因组。它通过 k-mer 计数分布(例如来自 Jellyfish 的计数)来推断基因组的全球属性,包括基因组大小、重复元素的丰度和杂合率。GenomeScope 能够在几秒钟内生成报告和多个描述基因组属性的图表,适用于研究基因组进化趋势,并为个体组装步骤提供参数指导。
2. 项目快速启动
2.1 安装依赖
在使用 GenomeScope 之前,首先需要安装并配置依赖工具 Jellyfish。Jellyfish 是一个用于计算 k-mer 频率的工具。
# 下载并安装 Jellyfish
wget http://www.genome.umd.edu/jellyfish/jellyfish-2.3.0.tar.gz
tar -xzf jellyfish-2.3.0.tar.gz
cd jellyfish-2.3.0
./configure
make
sudo make install
2.2 计算 k-mer 频率
使用 Jellyfish 计算 k-mer 频率,并生成 k-mer 计数直方图。
# 计算 k-mer 频率
jellyfish count -C -m 21 -s 1000000000 -t 10 *fastq -o reads.jf
# 生成 k-mer 计数直方图
jellyfish histo -t 10 reads.jf > reads.histo
2.3 运行 GenomeScope
使用生成的 k-mer 计数直方图文件运行 GenomeScope。
# 运行 GenomeScope
Rscript genomescope.R reads.histo 21 150 output
3. 应用案例和最佳实践
3.1 应用案例
GenomeScope 已被应用于多个物种的基因组特征研究,包括菠萝、梨、再生扁虫 Macrostomum lignano 和亚洲海鲈鱼。例如,通过对菠萝基因组的分析,GenomeScope 成功推断了其基因组大小、重复元素丰度和杂合率,为后续的基因组组装和分析提供了重要参考。
3.2 最佳实践
- 选择合适的 k-mer 长度:推荐使用 k-mer 长度为 21,但对于低覆盖率或高错误率的基因组,可能需要调整 k-mer 长度。
- 确保足够的覆盖率:GenomeScope 需要至少 25x 的单倍体基因组覆盖率,以确保模型能够准确识别峰值。
- 使用低错误率测序数据:推荐使用 Illumina 测序数据,因为其错误率较低,适合 GenomeScope 的分析要求。
4. 典型生态项目
GenomeScope 作为一个基因组分析工具,与其他基因组学工具和项目紧密结合,形成了一个完整的基因组分析生态系统。以下是一些典型的生态项目:
- Jellyfish:用于计算 k-mer 频率,是 GenomeScope 的前置工具。
- KMC:另一个用于计算 k-mer 频率的工具,可以替代 Jellyfish。
- GATK:用于基因组变异检测的工具,可以与 GenomeScope 结合使用,进行更全面的基因组分析。
- BWA:用于基因组比对的工具,可以与 GenomeScope 结合,进行基因组组装前的预处理。
通过这些工具的结合使用,可以构建一个完整的基因组分析流程,从基因组特征推断到基因组组装和变异检测,形成一个高效的基因组学研究平台。