基于近端策略优化(PPO)强化学习的四足机器人步态控制系统的研究

目录

1.近端策略优化(PPO)强化学习简介

2.四足机器人模型

3.四足机器人步态控制

状态和动作

奖励函数设计

4.MATLAB程序与测试结果


       四足机器人在复杂地形中的移动能力使其在搜救、探险和军事等领域具有广泛的应用前景。步态控制是四足机器人运动控制的核心问题之一,它决定了机器人的稳定性和效率。近年来,强化学习(Reinforcement Learning, RL)在机器人控制领域取得了显著进展,其中近端策略优化(Proximal Policy Optimization, PPO)算法因其稳定性高、收敛速度快等优点而备受关注。

1.近端策略优化(PPO)强化学习简介

       在PPO中,智能体的策略πθ(a∣s)由一个参数化的概率分布表示,s表示当前状态,a表示采取的动作。此外,还有一个价值函数Vϕ(s),它预测从当前状态开始的未来累积奖励。

       PPO算法定义了一种新的目标函数,其可以通过多个训练步骤进行小批量的更新,从而解决了传统策略梯度算法中的步长选择问题。其实现复杂度远低于TRPO算法。PPO通过限制策略更新的幅度来提高训练的稳定性。具体来说,PPO的目标函数为:

上述过程中,CLIP函数可以用如下两个图来表示:

      从上图可以知道,PPO进行了clip函数进行裁剪操作,新的策略相对于旧的策略不可能大幅度的提高,可以防止策略过度更新。

2.四足机器人模型

考虑一个四足机器人,其动力学模型可以表示为:

四足机器人的状态空间通常包括关节角度、关节角速度、躯干姿态和位置等信息:

3.四足机器人步态控制

状态和动作
  • 状态:包括关节角度、关节角速度、躯干姿态、位置、速度等。

  • 动作:关节力矩。

奖励函数设计

奖励函数的设计对于步态控制至关重要。常见的奖励项包括:

  • 平衡奖励:鼓励机器人保持平衡,如最小化躯干高度变化、角速度等。

  • 前进奖励:鼓励机器人向前移动,如最大化工件前进距离。

  • 能耗奖励:鼓励低能耗,如最小化关节力矩的平方和。

  • 平滑奖励:鼓励动作平滑,如最小化关节角度和角速度的变化率。

一个典型的奖励函数可以表示为:

4.MATLAB程序与测试结果

使用MuJoCo引擎,并通过MATLAB接口进行交互。假设已经安装了MuJoCo和相关的MATLAB工具箱。


% 加载模型
model = MjModel('path_to_your_model.xml');
data = MjData(model);

% 初始化可视化
viz = MjViz(model, data);

定义两个网络:一个是策略网络(Actor),另一个是价值网络(Critic)。

% 定义策略网络
actor = [
    featureInputLayer(numStateDimensions, 'Name', 'state')
    fullyConnectedLayer(64, 'Name', 'fc1')
    reluLayer('Name', 'relu1')
    fullyConnectedLayer(numActionDimensions, 'Name', 'fc2')
    softmaxLayer('Name', 'softmax')
];

% 定义价值网络
critic = [
    featureInputLayer(numStateDimensions, 'Name', 'state')
    fullyConnectedLayer(64, 'Name', 'fc1')
    reluLayer('Name', 'relu1')
    fullyConnectedLayer(1, 'Name', 'value')
];

% 设置优化器
options = trainingOptions('adam', 'InitialLearnRate', 0.001, 'MaxEpochs', 100);
actorNet = trainNetwork(actor, [], options);
criticNet = trainNetwork(critic, [], options);

实现PPO算法的主要步骤,包括数据收集、优势函数计算、策略更新等。


% 参数设置
gamma = 0.99; % 折扣因子
lambda = 0.95; % GAE衰减因子
epsilon = 0.2; % 剪裁参数
c1 = 0.5; % 价值函数损失权重
c2 = 0.01; % 熵正则项权重
batchSize = 64;
numEpisodes = 1000;

% 训练循环
for episode = 1:numEpisodes
    % 重置环境
    resetEnv(model, data);
    
    % 初始化存储
    states = [];
    actions = [];
    rewards = [];
    values = [];
    logProbs = [];
    dones = [];
    
    % 采集轨迹
    while ~isDone(model, data)
        state = getState(model, data);
        [action, logProb] = getAction(state, actorNet);
        value = getValue(state, criticNet);
        
        % 执行动作
        reward = stepEnv(model, data, action);
        
        % 存储数据
        states = [states; state];
        actions = [actions; action];
        rewards = [rewards; reward];
        values = [values; value];
        logProbs = [logProbs; logProb];
        dones = [dones; isDone(model, data)];
    end
    
    % 计算GAE和目标值
    nextValue = 0;
    advantages = zeros(size(rewards));
    returns = zeros(size(rewards));
    for t = length(rewards):-1:1
        delta = rewards(t) + gamma * nextValue * (1 - dones(t)) - values(t);
        advantages(t) = delta + gamma * lambda * (1 - dones(t)) * nextValue;
        returns(t) = advantages(t) + values(t);
        nextValue = advantages(t);
    end
    
    % 更新策略和价值网络
    for epoch = 1:4
        idx = randperm(length(states), batchSize);
        batchStates = states(idx, :);
        batchActions = actions(idx, :);
        batchAdvantages = advantages(idx, :);
        batchReturns = returns(idx, :);
        batchLogProbs = logProbs(idx, :);
        
        % 计算旧策略的概率
        oldLogProbs = getLogProb(batchStates, batchActions, actorNet);
        
        % 计算新策略的概率
        [newLogProbs, entropy] = getLogProb(batchStates, batchActions, actorNet, true);
        
        % 计算比率
        ratios = exp(newLogProbs - oldLogProbs);
        
        % 计算剪裁后的目标
        surr1 = ratios .* batchAdvantages;
        surr2 = min(ratios, 1 + epsilon) .* batchAdvantages;
        policyLoss = -mean(min(surr1, surr2));
        
        % 价值函数损失
        valueLoss = mean((getValue(batchStates, criticNet) - batchReturns).^2);
        
        % 总损失
        totalLoss = policyLoss + c1 * valueLoss - c2 * mean(entropy);
        
        % 更新网络
        updateNetwork(actorNet, totalLoss);
        updateNetwork(criticNet, totalLoss);
    end
    
    % 打印训练信息
    fprintf('Episode: %d, Total Reward: %.2f\n', episode, sum(rewards));
end

测试结果如下:


本文转载自本人公众文章(本程序处于测试阶段,暂不提供/出售该代码):

基于近端策略优化(PPO)强化学习的四足机器人步态控制系统的研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值