统计学——条件概率和贝叶斯概率

1. 条件概率

条件概率:一般记作 P ( A ∣ B ) P(A|B) P(AB),意思是当B事件发生时,A事件发生的概率。
计算公式:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A∩B)}{P(B)} P(AB)=P(B)P(AB)
在这里插入图片描述

例子

男性女性总计
升职28836324
未升职672204876
总计9602401000

A1:男性; A2:女性
B1:升职; B2:未升职

计算各个概率:

  • P(A1)=男性人数/总人数=960/1200=0.8
  • P(A2)=女性人数/总人数=240/1200=0.2
  • P(B1)=升职人数/总人数=324/1200=0.27
  • P(B2)=未升职人数/总人数=876/1200=0.73
  • P(B1∩A1)=男性升职人数/总人数=288/1200=0.24
  • P(B​1∩A2)=女性升职人数/总人数=36/1200=0.03

计算男女性的升职概率:

男性升职的概率P(B1|A1) = P ( B 1 ∩ A 1 ) P ( A 1 ) = 0.24 0.8 = 0.3 \frac{P(B1∩A1)}{P(A1)}=\frac{0.24}{0.8}=0.3 P(A1)P(B1A1)=0.80.24=0.3

女性升职的概率P(B1|A2) = P ( B 1 ∩ A 2 ) P ( A 2 ) = 0.3 0.2 = 0.15 \frac{P(B1∩A2)}{P(A2)}=\frac{0.3}{0.2}=0.15 P(A2)P(B1A2)=0.20.3=0.15

2.全概率

全概率:当某一事件的概率难以求得时,可转化为在一系列条件下发生概率的和。
计算公式:
P ( A ) = ∑ i = 1 n P ( B i ∩ A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^{n} P(B_i∩A) = \sum_{i=1}^{n}P(B_i)P(A|B_i) P(A)=i=1nP(BiA)=i=1nP(Bi)P(ABi)
在这里插入图片描述

3. 贝叶斯公式

贝叶斯公式:已经结果找原因。
由条件概率公式:
P ( A ∩ B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A∩B) = P(A|B)P(B) = P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A) 可推导出贝叶斯公式: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)由全概率公式可得:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A|B) = \frac{P(B|A)P(A)}{\sum_{i=1}^{n}P(A_i)P(B|A_i)} P(AB)=i=1nP(Ai)P(BAi)P(BA)P(A)

案例1:

所有来吃饭的所有客人中,会有10%的人喝酒 —— P(B),
所有客人中,会有20%的人驾车前来—— P(A),
开车来的客人中,会有5%喝酒 —— P(B|A)。
那么请问,在这个饭店喝过酒的人里,仍然会开车的比例—— P(A|B)是多少?

解: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) = 0.05 × 0.2 0.1 = 0.1 P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{0.05×0.2}{0.1} = 0.1 P(AB)=P(B)P(BA)P(A)=0.10.05×0.2=0.1

案例2:

某 AI 公司招聘工程师,来了8名应聘者,这8个人里,有5个人是985院校毕业的,另外3 人不是。面试官拿出一道算法题准备考察他们。根据以前的面试经验, 面试官知道:985毕业生做对这道题的概率是80%,非985毕业 生做对率只有30%。 现在,面试管从8个人里随手指了一个——小甲,让 TA 出 来做题。结果小甲做对了, 那么请问,小甲是985院校毕业的概率是多大?

解:
A1事件:985毕业; P ( A 1 ) P(A1) P(A1) = 0.625
A2事件:不是985毕业; P ( A 2 ) P(A2) P(A2)=0.375
B事件:是否做对题;
985毕业的条件下做对题的概率: P ( B ∣ A 1 ) P(B|A1) P(BA1)= 0.8
不是985毕业的条件下做对题的概率: P ( B ∣ A 2 ) P(B|A2) P(BA2) = 0.3
P ( A 1 ∣ B ) = P ( B ∣ A 1 ) P ( A 1 ) P ( B ) = P ( B ∣ A 1 ) P ( A 1 ) P ( B ∣ A 1 ) P ( A 1 ) + P ( B ∣ A 2 ) P ( A 2 ) = 0.625 ∗ 0.8 0.625 ∗ 0.8 + 0.375 ∗ 0.3 = 0.816 P(A1|B) = \frac{P(B|A1)P(A1)}{P(B)} = \frac{P(B|A1)P(A1)}{P(B|A1)P(A1)+P(B|A2)P(A2)} \\= \frac{0.625*0.8}{0.625*0.8+0.375*0.3} = 0.816 P(A1∣B)=P(B)P(BA1)P(A1)=P(BA1)P(A1)+P(BA2)P(A2)P(BA1)P(A1)=0.6250.8+0.3750.30.6250.8=0.816

案例3:

已知每10 万人中有1 人得艾滋病。现在有一种检查,如果被测者患病则一定能查出来。如果被测者没病,有1%的测试出错也显示阳性。现在一个人检查结果是阳性,问真正得病的概率是 多少?

解:
A1事件:得艾滋病的概率; P ( A 1 ) = 1 0 − 5 P(A1)=10^{-5} P(A1)=105
A2事件:没有得艾滋病的概率: P ( A 2 ) = 1 − 1 0 − 5 P(A2) = 1-10^{-5} P(A2)=1105
B事件:监测为阳性;
没病监测出阳性的概率: P ( B ∣ A 2 ) = 0.01 P(B|A2) = 0.01 P(BA2)=0.01
有病监测出阳性的概率: P ( B ∣ A 1 ) = 1 P(B|A1) = 1 P(BA1)=1
P ( A 1 ∣ B ) = P ( B ∣ A 1 ) P ( A 1 ) P ( B ) = 1 ∗ 1 0 − 5 1 0 − 5 + 0.01 ∗ ( 1 − 1 0 − 5 ) = 1 999.99 + 1 = 0.001 P(A1|B) = \frac{P(B|A1)P(A1)}{P(B)} = \frac{1*10^{-5}}{10^{-5}+0.01*(1-10^{-5})} = \frac{1}{999.99+1} = 0.001 P(A1∣B)=P(B)P(BA1)P(A1)=105+0.01(1105)1105=999.99+11=0.001

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC人工智残

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值