元素周期表中的半导体元素
2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|
– | B | C | N | O |
– | Al | Si | P | S |
Zn | Ga | Ge | As | Se |
Cd | In | Sn | Sb | Te |
Hg | Tl | Pb | Bi | Po |
晶体学
本征激发:本征半导体自己获得能量,从而实现跃迁
晶体
晶体的基本特征包括:均匀性,各向互异性,具有固定熔点,自限性,对称性,最小内能
均匀性:晶体各部分物理化学性质相同
各项互异性:不同方向上,晶体的性质不同
自限性:自发形成规则多面体外形
对称性:特定方向上,晶体性质相同
最小内能:相同热力学条件下,晶体内能最小
晶体结构
将晶体结构分解可以得到基元和点阵
基元是晶体的物理内容,可以是原子或分子,作用是反映周期排列的内容
点阵是晶体的数学抽象,反映原子周期排列的方式
点阵的特点:每个点周围环境相同
而那些周围环境相同的原子叫等同点
每个点规则排列可以得到晶格。这些排列的规则一般用基矢(如一组三维向量)描述
点阵代数形式是平移群,可表示为:
R
→
=
n
a
→
+
m
b
→
+
p
c
→
\overrightarrow{R}=n\overrightarrow{a}+m\overrightarrow{b}+p\overrightarrow{c}
R=na+mb+pc
单胞(或初基元胞简称元胞):最小重复单元
单胞的间距为基本周期
单胞和基矢二者结合建立坐标系,可以得到晶轴
三个向量的模
∣
a
→
,
b
→
,
c
→
∣
|\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}|
∣a,b,c∣及其方向角
α
,
β
,
γ
\alpha,\beta,\gamma
α,β,γ为晶格常数
晶体
半导体按结构分类,有结晶型半导体\无定型半导体
其他分类方式可以分为无机半导体,有机半导体,元素半导体,化合物半导体
能带
能带的定义:原子规则的排列时极为晶体,其内层原子几乎无影响;而价电子和外层电子会受临近电子作用和原子作用,使原子本身的能级根据泡利不相容原则分裂为连续的能带
禁带的定义:一定条件下电子不可占有的能量范围
满带的定义:各能级均被两个自旋相反的电子填充的能带
导带的定义:未被电子填满的能带
空带的定义:各能级均无电子填充的能带
既然掺杂可以控制半导体的电导率,那么通过哪些变量来控制半导体电导率呢?通过载流子浓度和迁移率。
载流子浓度的定义:热平衡下,载流子的数量密度
迁移率的定义:单位电场强度下载流子平均的漂移速度
电导率的公式:
s
=
n
e
μ
n
+
p
e
μ
p
s=n_e\mu_n+p_e\mu_p
s=neμn+peμp
电子浓度
n
e
n_e
ne,电子迁移率
μ
n
\mu_n
μn,空穴浓度
p
e
p_e
pe,空穴迁移率
μ
p
\mu_p
μp
金属导电性更好的原因:金属的迁移率稍低,但其电子浓度极高
对称性
对称操作的定义:维持整个物体不变的操作
对称操作群的定义:一个物体所有对称操作的集合
对称素的定义:对称操作中保持不变的几何要素
对称素包括:反演对称心,旋转轴,对称面
乌尔夫定律(最小内能)
乌尔夫定律的含义:一定体积下,晶体平衡形态必然表面能最小
乌尔夫定律的数学表达为:
∑
i
=
1
n
σ
i
s
i
最小
\sum_{i=1}^n\sigma_is_i最小
∑i=1nσisi最小
σ
i
\sigma_i
σi为单位面积的表面能;
s
i
s_i
si为表面面积
相图
晶体生长机理
相变的本质是什么?是原子间距和原子体积的改变吗?
相变
相变分为一级相变和二级相变
一级相变的含义:相变时两相的自由能相等,但一阶导(即熵)不相等
发生相变的热力学条件,就是亚稳态
亚稳态存在的条件是:由于相间存在界面能,故亚稳态与稳态之间存在能量位垒
亚稳态包括如下状态:熔-固相转变,液-固相转变,气-固相转变
从熔-固转变的热力学条件,也就是自由能减小(即熵增)的条件是过冷度
液-固相转变的热力学条件,其自由能减小,即熵增的条件为过饱和浓度
气固相转变等热力学条件,即自由能减小,熵增的条件是过饱和蒸汽压
下面的驱动力是过程前后的自由能差。当前后的自由零差小于零时,过程可自发进行
自由能差的定量表达为:
Δ
G
=
Δ
G
1
+
Δ
G
2
\Delta G=\Delta G_1+\Delta G_2
ΔG=ΔG1+ΔG2
Δ
G
1
\Delta G_1
ΔG1来自部分原子从高自由能态转变为低自由能态的释放
Δ
G
2
\Delta G_2
ΔG2来自新相产生后,两相间界面能的增加
由体系熵增可以得到: − Δ G 1 > Δ G 2 -\Delta G_1>\Delta G_2 −ΔG1>ΔG2
将两部分自由能变化量进一步代入,可以得到自由能差的另一个表达式:
Δ
G
=
n
V
⋅
Δ
G
V
+
A
(
n
)
⋅
y
\Delta G=nV\cdot \Delta G_V+A(n)\cdot y
ΔG=nV⋅ΔGV+A(n)⋅y
原子数n;新相原子体积V;单个原子相变释放的能量
Δ
G
V
\Delta G_V
ΔGV;新相表面积A(n);单位表面的界面能y
以自由能差的角度观察晶体生长(或成核过程)
成核的方式分为:均匀成核和非均匀成核
均匀成核
均匀成核的特点,或者称为定义:从均匀单相熔体中,空间各点均可能出现成核的过程
以热力学角度观察,成核过程有四步,分别为:过冷、晶胚、临界晶核(半径为 r ∗ r^{*} r∗,一般晶核的半径为r)、长大
对于均匀成核来说起,相应的阶段为:
1.自由能随生长而增大,所以易消失
2.达到临界晶核(即半径达到
r
∗
r^{*}
r∗)后,自由能依然增大,但
−
Δ
G
1
-\Delta G_1
−ΔG1渐渐逼近。所以
r
∗
r_{*}
r∗此时为可长大还不消失的最小晶胚半径。
(形成
r
∗
r_{*}
r∗大小的新相,需做功1/3个新相界面能)
过冷度越大,临界晶核的半径
r
∗
r_{*}
r∗越小,其原因是临界自由焓变化小,即成核位垒小
3.
−
Δ
G
1
-\Delta G_1
−ΔG1超过
Δ
G
2
\Delta G_2
ΔG2,晶核逐渐自发长大,形成晶体
非均匀成核
非均匀成核定义:借助表面、界面、微粒、裂纹、器壁、催化位置等成核的过程
对于非均匀成核来说,其包括表面、界面、微粒裂纹等杂质条件的作用是:提供有力的成核界面,降低所需克服的表面能
衡量这些杂质条件降低的表面能大小,我们使用: f ( Θ ) = 0 , Θ = 0 f(\Theta)=0,\Theta=0 f(Θ)=0,Θ=0时,过程从均匀成核的第二步开始; Θ = π , f ( Θ ) = 1 \Theta=\pi,f(\Theta)=1 Θ=π,f(Θ)=1时,则没有任何作用
晶体动力学模型
晶体动力学模型中晶体生成过程的定义:基元从周围环境通过界面进入晶格座位的过程
晶体动力学模型的分类包括:完整光滑面理论模型,非完整光滑面理论模型
完整光滑面理论模型,其核心是:不同的晶体生长台阶源。
晶体生长台阶源有两种,分别是:1.成键数目最多的位置,即最有利位置;2.螺旋位错露头点
晶体缺陷
晶体缺陷的分类包括点缺陷,面缺陷,线缺陷,体缺陷
点缺陷进一步分为空穴、间隙原子、置换原子、原子反结构缺陷
点缺陷
点缺陷中空穴分为两种肖特基缺陷和弗兰克尔缺陷
肖特基缺陷指有空穴但没有间隙原子的缺陷
弗兰克尔缺陷指离子晶体中有空穴,便一定会有间隙原子的那种缺陷
点缺陷中的间隙原子一般都来自于原子热运动。
点缺陷中的置换原子则是因为由异种原子产生的。
点缺陷的定义:只在三维尺度上不大于几个原子尺度的一些微缺陷
对二四族元素而言,点缺陷的特殊表示为:MX
用MX等符号表示的缺陷分类如下表:
缺陷种类 | 符号 | 含义 |
---|---|---|
空位Vacancy | V X V_X VX | 本是X的位置有一个空位,即缺了一个X原子 |
– | V M V_M VM | 本是M的位置有一个空位,即缺了一个M原子 |
间隙原子interstiatial atom | M i M_i Mi | 本该是间隙i的地方多了一个M原子 |
– | X i X_i Xi | 本该是间隙i的地方多了一个X原子 |
反结构缺陷 | X M X_M XM | 本应是M的地方居然是一个X |
– | M X M_X MX | 本应是X的地方居然是一个M |
外来杂质F(foreign) | – | – |
空位(或空穴)对离子性强的化合物半导体所起的作用是:正电性强的空位起受主作用,负电性强的空位起失主作用。
该规律通俗地讲,就是说本来M元素是要给出两个电子的,结果没了,那少两个电子不就多了几个空穴吗。
X也一样,本来是要取走两个电子的,结果没取,那两个电子留下了,就相当于多了两个电子。
空位由质量作用定律得到的浓度关系为:温度不变时,两种空位(M和X)浓度之积为常数。定量表达为: n [ V X ] ⋅ n [ V M ] = 定值 n[V_X]\cdot n[V_M]=定值 n[VX]⋅n[VM]=定值
间隙原子对离子性强的晶体的作用规律,正电性原子处于间隙位置时起施主作用。
负电性原子处于间隙位置时起受主作用。
通俗地讲,M倾向于把自己的电子给出;X倾向于把别人的电子拿来。
对间隙原子来说,由质量作用定律得到浓度的规律为温度不变时,两者的浓度乘积为定值。定量表达为: n [ M i ] ⋅ n [ X i ] = 定值 n[M_i]\cdot n[X_i]=定值 n[Mi]⋅n[Xi]=定值
综上所述, V X , M i , X M V_X,M_i,X_M VX,Mi,XM作施主, V M , X i , M X V_M,X_i,M_X VM,Xi,MX作受主(M_X和X_M可能有误)
线缺陷、面缺陷和体缺陷
线缺陷分为刃型位错,螺型位错
面缺陷有两种,分别是晶面和相界
面缺陷的延伸概念则是晶面,晶面的来源:多晶中结构相同,但晶相不同的晶粒组合而成
晶体外表面的特点:晶体表面原子比内部原子配位数少,所以能量更大。这一部分能量即是界面能
相界的定义:多晶钟结构不同的晶粒组成的晶面
相界分类有:共格界面,半共格界面,非共格界面
相界的分类依据是:两相晶格的原子在相界面上的吻合程度
体缺陷的来源:线缺陷和面缺陷大于晶体尺寸时的缺陷
自补偿效应
自补偿效应的定义:掺入的杂质被具有相反电荷类型的缺陷所补偿,使掺杂失效的效应
由于自补偿效应产生的特殊半导体叫单极性半导体,它包含在单极性材料中。
单极性材料的定义:笔记中没有,到PPT中去找
单极性半导体的定义:由于会发上自补偿效应而只能以一种导电类型存在的半导体。
单极性半导体的特点:难以利用杂质补偿的方式制作PN结
自补偿效应的规律:
1.禁带宽度 E g E_g Eg越大,自补偿越严重
禁带宽度影响自补偿效应的原因:
2.空位浓度越大,自补偿越严重
如何观测化学合物半导体自补偿的程度呢?
则是通过空位生成能
E
V
E_V
EV
空位生成能的定义:
空位生成能如何间接影响自补偿效应? E V E_V EV越低越容易形成空位,则空位就越多,浓度就越大
如果问你影响自补偿效应的两个直接因素,那就是禁带宽度和空位浓度两项。空位生成能不是直接因素。
如何观测化合物半导体自补偿的程度呢?则是通过 E g E_g Eg和 E g Δ H V \frac{E_g}{\Delta H_V} ΔHVEg( Δ H V \Delta H_V ΔHV为空位的形成热焓)
与 E g Δ H V \frac{E_g}{\Delta H_V} ΔHVEg相关的现象: E g Δ H V > 1 \frac{E_g}{\Delta H_V}>1 ΔHVEg>1时自补偿效应大,不易做两性材料;当 E g Δ H V < 0.75 \frac{E_g}{\Delta H_V}<0.75 ΔHVEg<0.75时,可以做两性材料
元素半导体发展历史不考