【深度学习】01-01-课程介绍-李宏毅老师21&22深度学习课程笔记

Prerequisite

在这里插入图片描述

Orientation

在这里插入图片描述

Assignment Schedule

在这里插入图片描述

Machine Learning

Machine Learning ≈ Looking for Function

机器学习:让计算机寻找一个复杂函数式。
在这里插入图片描述

Deep Learning

深度学习:让计算机通过神经网络寻找一个复杂函数式。
在这里插入图片描述

Different types of Functions

在这里插入图片描述

Supervised Learning(Lecture 1-5)

在这里插入图片描述

Generative Adversarial Network(Lecture 6)

Supervised Learning 需要成对的(样本,标签)数据集,而 Generative Adversarial Network 只需要样本,和标签,不需要两者之间的关联关系,GAN可以自己找到这种关联关系。
在这里插入图片描述

Self-supervised Learning(Lecture 7)

Supervised Learning的缺点是需要对大量样本进行标记,成本很高,而且,为每一个任务收集样本也很麻烦,所以产生了Self-supervised Learning。
在这里插入图片描述

Self-supervised Learning 不需要预先对样本进行标注,节省了很大成本。
在这里插入图片描述
在这里插入图片描述

现在开发一个application很简单,因为与硬件交互的事情都有操作系统帮忙处理,Pre-trained Model(Foundation Model) 可以类比为操作系统,Downstream Tasks 相当于application。
在这里插入图片描述
在这里插入图片描述

Anomaly Detection(Lecture 8)

在这里插入图片描述

Explainable AI(Lecture 9)

在这里插入图片描述

Model Attack(Lecture 10)

在这里插入图片描述
在这里插入图片描述

Domain Adaptation(Lecture 11)

在这里插入图片描述

Reinforcement Learning(Lecture 12)

在这里插入图片描述

Network Compression(Lecture 13)

在这里插入图片描述

Life-long Learning(Lecture 14)

在这里插入图片描述

Meta Learning(Lecture 15)

learn to learn
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值