我们使用退化函数对退化过程建模,它和附加噪声选项一起,作用于输入图像f(x, y),产生一副退化的图像g(x, y):
g(x,y) = H(f(x, y)) + n(x,y).
给定g(x,y), 一些关于退化函数H的知识以及一些关于加性噪声n(x,y)的知识,图像复原的目的是得到原始图像的估计f1(x,y).我们要使这个估计尽可能接近原始输入图像。通常,我们对H和n(x)知道的越多,f1(x,y)就越接近于f(x, y)。
如果H是线性的,空间不变的过程,退化图像在空间域由下面的式子给出:
g(x, y) = h(x, y) * f(x, y) + n(x, y);
其中,h(x, y) 是退化函数的空间表示,*表示卷积。
已知,空间域的卷积和频域的乘法组成了傅里叶变换对,我们可以用等价的频域表示来写出前面的模型:
G(u, v) = H(u, v)F(u, v) + N(u,v)
其中,大写字母表示的是空间域相应项的傅里叶变换。退化函数H(u,v)有时候称为光传递函数(OTF),该名词源于光学系统傅里叶分析。在空间域中,h(x, y) 被称为点扩散函数(PSF).
对于任何种类的输入,让h(x, y)作用与点光源得到退化的特征。
OTF与PSF是傅里叶变换对,工具箱提供了两个函数otf2psf和psf2otf,用于otf和psf之间的转换。
由于退化是线性的,因此空间不变的退化函数H可以由卷积来建模,有时退化过程归诸于“PSF与图像卷积”。类似地,复原处理有时候也称为反卷积。
矩阵表示:
g(x, y) = h(x, y) * f(x, y) + n(x, y); 表示为向量矩阵形式是:
g = Hf + n;
其中g, H,f , n 都是向量。
假设g(x,y) 的大小为M*N。然后我们使用g(x,y)的第一行中的图像元素构成向量g的第一组N个元素,第二行构成下一组N个元素,依次类推,结果向量将有MN*1维。这也同样是f , n的维数,因为这些向量是以同样的方式构成的。矩阵H的维数是MN*MN,其元素由卷积元给出。