电容与电场求解器数学描述

前言

电容

电容(Capacitance)亦称作“电容量”,是指在给定电位差下自由电荷的储藏量,记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。

电容是指容纳电荷的能力。任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。

在国际单位制里,电容的单位是法拉,简称法,符号是F,由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,换算关系是:
1法拉(F)= 1 0 3 10^3 103 毫法(mF)= 1 0 6 10^6 106 微法(μF)= 1 0 9 10^9 109 纳法(nF)= 1 0 12 10^{12} 1012 皮法(pF)= 1 0 15 10^{15} 1015fF

静电场问题

在这里插入图片描述
∇ 2 u ( x , y ) = 0      i n    Ω     ( 1 ) u = u ˉ      o n     Γ u     ( 2 ) q = ∂ u ∂ n ⃗ = 0     o n     Γ q     ( 3 ) ε a ⋅ ∂ u a ∂ n a ⃗ = − ε b ⋅ ∂ u b ∂ n b ⃗ ,     u a = u b      o n     Γ I     ( 4 ) \nabla^2u(x, y) = 0 \ \ \ \ in \ \ \Omega \ \ \ (1) \\ u = \bar{u} \ \ \ \ on \ \ \ \Gamma_u \ \ \ (2) \\ q = \frac{\partial u}{\partial \vec{n}} = 0 \ \ \ on \ \ \ \Gamma_q \ \ \ (3) \\ \varepsilon _a \cdot \frac{\partial u_a}{\partial \vec{n_a}} = -\varepsilon _b \cdot \frac{\partial u_b}{\partial \vec{n_b}} , \ \ \ u_a = u_b \ \ \ \ on \ \ \ \Gamma_I \ \ \ (4) 2u(x,y)=0    in  Ω   (1)u=uˉ    on   Γu   (2)q=n u=0   on   Γq   (3)εana ua=εbnb ub,   ua=ub    on   ΓI   (4)

等式 (1) 表示电势 u u u 在每个介质区域内(橙色和黄色区域)满足 L a p l a c e Laplace Laplace 方程。
等式 (2) 表示在导体表面满足 D i r i c h l e t Dirichlet Dirichlet 边界条件(在主导体 P1 表面 u = 1 u=1 u=1 ;在环境导体 P3 表面 u = 0 u=0 u=0 )。
等式 (3) 表示区域外边界( A B ‾ , B C ‾ , C D ‾ , D A ‾ \overline{AB}, \overline{BC}, \overline{CD}, \overline{DA} AB,BC,CD,DA)上满足 N e u m a n n Neumann Neumann 边界条件
等式 (4) 表示在介质交界面上的电位移,电势连续条件, ε a , ε b \varepsilon _a , \varepsilon _b εa,εb 分别为交界面两侧介质 a , b a,b a,b 的介电常数。

注:上图在介质中插入了一个 Floating 导体 P2,其表面满足如下条件:P2 表面上 u , q u, q u,q 均未知, 但 P2 表面上任意两点的 u u u 是相等的,且沿表面累加的 q q q 等于零即 P2 表面向外不表现带电的属性(在边界元计算过程中, P2 表面也要剖网格, P2 表面的所有单元上 u u u 是相同的; ∑ i = 1 i = N q i = 0 \sum_{i=1}^{i=N}q_i = 0 i=1i=Nqi=0 )。 若某介质的介电常数设置为零, 则表示不想电场线穿过此介质, 即在此介质边界上是自然边界 ( N e u m a n n Neumann Neumann) 条件, q = 0 q = 0 q=0

注:metal fill 处理后 net 的 total cap 降低, cc cap 增大, 可以想象上下两个板子中间放了一个 floating 导体,相当于压缩了 floating 导体占的空间, 因为 floating 导体上下表面都是电子(正负电子和为零),其内部真空,从而让上下两个板子离得更近了, cc cap 增大。

基于ARIMAX的多变量预测模型python源码+数据集(下载即用),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值