前言
电容
电容(Capacitance)亦称作“电容量”,是指在给定电位差下自由电荷的储藏量,记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。
电容是指容纳电荷的能力。任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。
在国际单位制里,电容的单位是法拉,简称法,符号是F,由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,换算关系是:
1法拉(F)=
1
0
3
10^3
103 毫法(mF)=
1
0
6
10^6
106 微法(μF)=
1
0
9
10^9
109 纳法(nF)=
1
0
12
10^{12}
1012 皮法(pF)=
1
0
15
10^{15}
1015fF
静电场问题
∇
2
u
(
x
,
y
)
=
0
i
n
Ω
(
1
)
u
=
u
ˉ
o
n
Γ
u
(
2
)
q
=
∂
u
∂
n
⃗
=
0
o
n
Γ
q
(
3
)
ε
a
⋅
∂
u
a
∂
n
a
⃗
=
−
ε
b
⋅
∂
u
b
∂
n
b
⃗
,
u
a
=
u
b
o
n
Γ
I
(
4
)
\nabla^2u(x, y) = 0 \ \ \ \ in \ \ \Omega \ \ \ (1) \\ u = \bar{u} \ \ \ \ on \ \ \ \Gamma_u \ \ \ (2) \\ q = \frac{\partial u}{\partial \vec{n}} = 0 \ \ \ on \ \ \ \Gamma_q \ \ \ (3) \\ \varepsilon _a \cdot \frac{\partial u_a}{\partial \vec{n_a}} = -\varepsilon _b \cdot \frac{\partial u_b}{\partial \vec{n_b}} , \ \ \ u_a = u_b \ \ \ \ on \ \ \ \Gamma_I \ \ \ (4)
∇2u(x,y)=0 in Ω (1)u=uˉ on Γu (2)q=∂n∂u=0 on Γq (3)εa⋅∂na∂ua=−εb⋅∂nb∂ub, ua=ub on ΓI (4)
等式 (1) 表示电势
u
u
u 在每个介质区域内(橙色和黄色区域)满足
L
a
p
l
a
c
e
Laplace
Laplace 方程。
等式 (2) 表示在导体表面满足
D
i
r
i
c
h
l
e
t
Dirichlet
Dirichlet 边界条件(在主导体 P1 表面
u
=
1
u=1
u=1 ;在环境导体 P3 表面
u
=
0
u=0
u=0 )。
等式 (3) 表示区域外边界(
A
B
‾
,
B
C
‾
,
C
D
‾
,
D
A
‾
\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}
AB,BC,CD,DA)上满足
N
e
u
m
a
n
n
Neumann
Neumann 边界条件
等式 (4) 表示在介质交界面上的电位移,电势连续条件,
ε
a
,
ε
b
\varepsilon _a , \varepsilon _b
εa,εb 分别为交界面两侧介质
a
,
b
a,b
a,b 的介电常数。
注:上图在介质中插入了一个 Floating 导体 P2,其表面满足如下条件:P2 表面上 u , q u, q u,q 均未知, 但 P2 表面上任意两点的 u u u 是相等的,且沿表面累加的 q q q 等于零即 P2 表面向外不表现带电的属性(在边界元计算过程中, P2 表面也要剖网格, P2 表面的所有单元上 u u u 是相同的; ∑ i = 1 i = N q i = 0 \sum_{i=1}^{i=N}q_i = 0 ∑i=1i=Nqi=0 )。 若某介质的介电常数设置为零, 则表示不想电场线穿过此介质, 即在此介质边界上是自然边界 ( N e u m a n n Neumann Neumann) 条件, q = 0 q = 0 q=0 。
注:metal fill 处理后 net 的 total cap 降低, cc cap 增大, 可以想象上下两个板子中间放了一个 floating 导体,相当于压缩了 floating 导体占的空间, 因为 floating 导体上下表面都是电子(正负电子和为零),其内部真空,从而让上下两个板子离得更近了, cc cap 增大。