工程师 - 什么是迟滞阈值(hysteresis thresholds)

迟滞阈值(hysteresis thresholds)通常与迟滞现象相关。迟滞现象指的是一个系统在输入变化时,其输出不仅取决于当前输入,还取决于输入的历史。在这个过程中,系统的状态会在两个或多个稳定状态之间切换,而这些切换并不是瞬时的,而是存在某种“迟滞”效应。

在这种背景下,迟滞阈值指的是导致系统状态变化的临界点。例如,在磁滞现象中,磁性材料的磁化强度随外加磁场的变化而变化,但其磁化强度并不完全跟随外加磁场的变化。当外加磁场减小到一定值时,磁化强度不会立即减小,而是会保持在某个值,直到外加磁场减小到某个特定的临界点,即迟滞阈值,才会发生变化。同样,当外加磁场增加到某个特定的临界点时,磁化强度也会发生相应的变化。

这些阈值的存在导致了迟滞曲线的形成,曲线在外加磁场增加和减少的过程中形成了一个闭合回路。迟滞现象广泛存在于物理学、材料科学、生物学、工程学等多个领域。

示例

1. 磁性材料:在磁性材料中,迟滞阈值可以描述为当外部磁场强度增加时材料开始磁化的点,以及当磁场强度减小时材料开始去磁的点。

2. 热力学系统:在某些热力学系统中,当温度变化时系统状态也会随之变化,但这种变化过程可能存在迟滞现象,系统需要超过某个温度阈值后才会发生状态转变。

3. 生物学系统:在神经元活动中,神经元的放电频率可能也会表现出迟滞现象,不同的输入信号强度可能需要超过特定的阈值才能引发神经元的兴奋或抑制。

迟滞阈值在理解和设计具有迟滞行为的系统时非常重要,特别是在需要精确控制系统响应的应用中。

### 迟滞比较器门限值计算 对于同相迟滞比较器而言,可以通过求解阈值的临界条件来确定其上下门限电压。假设供电电源为 \( V_{CC} \),反馈电阻分别为 \( R_1 \) 和 \( R_2 \),则可以得出如下关系: 当输出处于高电平时 (\( V_O=V_{CC} \)),正向输入端电压 \( V_P \) 由下式给出: \[ V_P=\frac{R_2}{R_1+R_2}\cdot V_U+\frac{R_1}{R_1+R_2}\cdot V_N \tag{1}[^1] \] 其中 \( V_U \) 是上参考电压而 \( V_N \) 是负参考电压。 同样地,如果输出切换至低电平,则有新的表达式描述此时的正向输入端电压 \( V'_P \) : \[ V'_P=\frac{R_2}{R_1+R_2}\cdot V_L+\frac{R_1}{R_1+R_2}\cdot V_N \tag{2} \] 这里 \( V_L \) 表示较低的参考电压水平。因此,高低两态之间的差异即构成了所谓的“迟滞性”,使得电路具有一定的抗干扰能力。 为了简化分析过程,通常设定 \( V_N=0 \),这样就可以得到更直观的结果——仅依赖于单侧供电情况下的比例因子以及选定的工作状态 (高/低) 来决定具体的门限位置了。 具体来说,设定了上述前提之后,我们可以进一步推导出门限电压的具体数值: - 上门槛值 \( V_T^{H}=V_P\left(V_O=V_{CC},V_N=0\right)=\frac{R_2}{R_1+R_2}\times V_{CC} \) - 下门槛值 \( V_T^{L}=V'_P\left(V_O=GND,V_N=0\right)=GND \) 值得注意的是,在实际应用场景中可能还需要考虑其他因素的影响,例如温度变化对组件参数造成的微小变动等外部扰动源所带来的影响;另外就是不同型号器件之间可能存在细微差别,所以在设计时应当参照特定产品的数据手册来进行精确调整。 ```python def calculate_threshold_voltages(vcc, r1, r2): """ Calculate the upper and lower threshold voltages of a hysteresis comparator. Parameters: vcc : float Supply voltage in volts. r1 : float Resistance value connected between output and non-inverting input terminal in ohms. r2 : float Feedback resistance connecting to ground from non-inverting input terminal in ohms. Returns: tuple[float, float]: A pair representing the calculated high-side and low-side thresholds respectively. """ vh = (r2 / (r1 + r2)) * vcc vl = 0 return vh, vl ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜流冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值