P(Y|X)公式与机器学习模型的理解

本文深入探讨了智能营销中的Uplift Modeling,解释了如何使用P(Y|X)公式将传统的0/1分类任务转化为概率预测的回归任务。通过理解用户在给定特征X下的下单概率P(Y|X),企业能够更精准地评估营销活动的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 https://blog.csdn.net/jinping_shi/article/details/105583375 《智能营销增益模型(Uplift Modeling)的原理与实践》文章里,看到有P(Y|X)公式,却无法和机器学习模型联系起来,

这里,

P(Y|X)里的X是模型的输入(特征),Y是模型的输出的枚举(比如下单1/没下单0),P(Y|X)是输出为Y的概率(即下单/没下单的概率),

之前我们熟知模型的target是Y,(可以看做一个0/1分类任务)

现在,

这时,模型的target是P(Y|X),也就是模型的target是一个(比如0到1的)概率,即是一个regression任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Hope__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值