深度残差网络和Highway网络

今天讲的这两种网络结构都是最新被业界针对图像处理问题提出的最新的结构,主要解决就是超深层的网络在训练优化中遇到的问题。说实话这两种模型就本身来说数学公式都不复杂,但是确实在实战中取得了非常好的效果(深度残差网络帮助微软的团队以绝对优势获得了2015 Image Cup的冠军),这也从侧面说明了深度学习是一门以实践为主导的学科,在这个领域里实践才是检验真理的唯一标准。(很多新的结构都是因为在实践中取得了不错的效果,然后被一些大牛通过一些高大上概念进行包装,最后再以一种很牛逼的姿态传递到我们的面前,令我们膜拜)。

首先来说一下深度残差网络,下面是深度残差网络的架构图
(来自论文《Deep Residual Learning for Image Recognition》)
这里写图片描述
之所以说起名“残差”网络,是因为假设网络要学习的假说是H(x),那么由于图中identity x之间跨过了2层,那么其实相当于拟合的是F(x)=H(x)-x,这就是残差概念的来源,这是论文里的说法。其实我感觉作者在提出这个结构的时候,打破了传统的神经网络n-1层的输出只能给n层作为输入的惯例,使某一层的输出可以直接跨过几层作为后面某一层的输入。乍一看这样的结构没啥的,貌似没有什么特别厉害的地方,其实不然
这里写图片描述
上图就是其构造深度残差网络的构思来源图,一个是56层的网络一个是20层的网络,从原理上来说其实56层网络的解空间是包括了20层网络的解空间的,换而言之也就是说,56层网络取得的性能应该大于等于20层网络的性能的。但是从训练的迭代过程来看,56层的网络无论从训练误差来看还是测试误差来看,误差都大于20层的网络(这也说明了为什么这不是过拟合现象,因为56层网络本身的训练误差都没有降下去)。导致这个原因就是虽然56层网络的解空间包含了20层网络的解空间,但是我们在训练网络用的是随机梯度下降策略,往往解到的不是全局最优解,而是局部的最优解,显而易见56层网络的解空间更加的复杂,所以导致使用随机梯度下降算法无法解到最优解。
其实在构造这个网络的时候,我们完全可以换一个思路,如果20层的网络可以取得非常好的结果了,我在构造56层网络的时候前20层从20层网络中copy过来,后面的36层只做inentity map至少效果不会差于20层的网络。于是乎深度残差的网络就提出了,这个思想其实不复杂,说白了打破了每一层网络输入只能来自于上一层网络输出的规律,可以让一些网络的输出直接跳过几层到达后面的输入。这样的网络确实也取得了非常好的效果。另外要注意的是,在真正训练的时候,有几点trick要注意:1、注意层与层之间使用batch-normalization技术,否则由于网络过深会导致梯度消失的问题,导致网络训练无法收敛;2、论文里说了,为了保持每一层网络的参数差不多,每当经过了pooling层输入的维度减少了一般,那么filter的个数就要增加一倍。

说完了深度残差网络,我们再来说说Highway网络。这篇网络来源于论文《Highway Networks》
所谓Highway网络,无非就是输入某一层网络的数据一部分经过非线性变换,另一部分直接从该网络跨过去不做任何转换,就想走在高速公路上一样,而多少的数据需要非线性变换,多少的数据可以直接跨过去,是由一个权值矩阵和输入数据共同决定的。下面是Highway网络的构造公式:
y=H(x,WH)T(x,WT)+xC(x,WC)
y向量由两项组成。T叫做transform gate ,C叫做carry gate。CT的激活函数都是sigmoid函数。
T算出来的是一个向量a1a2an,其中每个数字都是(0,1)之间的浮点数,代表y中由x变化后的内容所占的比例;
C算出来的也是一个向量a1a2an,其中每个数字也都是(0,1)之间的浮点数,代表y中由x本身内容所占的比例;
(为了简便起见,有时候令C=1T1 代表了维度和T 一样长的向量)从公式中我们需要注意的是,由于是点乘,当C(x,WC)取了 1T(x,WT)之后那么x,y,H(x,WH),T(x,WT)必须是同样的维度。如果我们想更改x的维度从A变成B的话,一种方法是采用zero-padding和下采样的方法,或者是引入一个维度为A*B的变换矩阵,使每次都乘上这个矩阵。

主要解决的是多层深度神经网络的训练收敛问题,即使层数很多也可以使用简单的方法比方说 backpropogation来进行训练,保证合理的迭代范围内收敛,而传统的网络是很难保证收敛的。如下图所示:
这里写图片描述
当网络很深的时候,使用了Highway的网络更容易收敛。

原文里说道:
A highway layer can smoothly vary its behavior between that of a plain layer and that of a layer which simply passes its inputs through.
也就是说Highway也就是让输入数据的一部分变换,另一部分直接通过,相当于整体上来讲在这两者的效果中选了一个均衡。

从广义的角度来说,Highway更像是一种思想,它不但可以用在全连接网络中,也可以用在卷积神经网络中,原文里说:“Convolutional highway layers are constructed similar to fully connected layers. Weight-sharing and local receptive fields are utilized for both H and T transforms. We use zero-padding to ensure that the block state and transform gate feature maps are the same size as the input.”。

其实深度残差网络和Highway网络这两种网络结构都能够让一部分的数据可以跳过某些变换层,而直接到后面的层中去,只不过Highway网络需要一个权值来控制每次直接通过的数据量,而深度残差网络就直接让一部分数据通到了后面。从大量的实验中,我感觉这两种网络只有在很深的场景中才能发挥出“威力”,如果本身网络层数较浅,勉强使用这两种结构是很难得到好的结果的。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试