数学篇----随机变量的数值特征[概率论](一)

前言


    翻开《概率论与数理统计》(第四版)的第四章,你会看到“随机变量的数值特征”几个字。学了概率论这么久,该好好把这章总结一下。这章的知识在理论和实际应用真的很重要,特别是在数据分析处理的时候。


1 数学期望


    简称期望,又叫均值。记作E(X),完全由随机变量X的概率分布所确定。

   

    离散型随机变量X:P{ X = Xi } = Pi , i = 1 ,2 ,3 ,······

    级数能收敛,其数学期望:


   

    连续型随机变量X,其概率密度为f(x),

    积分能收敛,其数学期望:


    几个重要的性质

  • E(C) = C ,C为常数;
  • E(CX) = CE(X) ,C为常数;
  • E(X + Y) = E(X) + E(Y),X、Y为随机变量
  • E(XY) = E(X)E(Y) ,X、Y是相互独立的随机变量


2 方差


    方差,是为了度量随机变量与其均值(期望)的偏离程度。

    定义:设X是一个随机变量,若E{ [ X - E(X) ]^2 }存在,则称E{ [ X - E(X) ]^2 }为X的方差,记为D(X)或Var(X),即:

                    D(X) = Var(X) = E{ [ X - E(X) ]^2 }     (2.1)

    D(X)越小,X的值越集中在E(X)的附近;反之,则越分散。


    对于离散型随机变量X:


   

    对于连续型随机变量X:


其中,f(x)是X的概率密度。


    计算公式:D(X) = Var(X) =  E(X^2) - E(X)^2     (2.4) 


    有个标准化变量的概念:设随机变量X具有数学期望E(X) = μ,方差D(X) = σ^2(不为0)。记X* = (X - μ) / σ,则

          X* = (X - μ) / σ的数学期望为0,方差为1。X*称为X的标准化量


    几个重要的性质:

  • D(C) = 0 , C是常数
  • D(CX) = C^2D(X)  ,  D(X + C) = D(X) , X是随机变量,C是常数
  • D(X + Y) = D(X) + D(Y) + 2E{ ( X - E(X) )( Y - E(Y) ) }  ,   X、Y是两个随机变量
  • D(X + Y) = D(X) + D(Y)  ,   X、Y是两个相互独立的随机变量


    切比雪夫(Chebyshev)不等式

    设随机变量X具有数学期望E(X) = μ,方差D(X) = σ^2,则对于任意正数ε,不等式:


     成立


3 协方差及相关系数


    协方差用于描述X和Y之间相互关系的数值特征。

    定义:量E{ [X - E(X)][( Y - E(Y)] }称为随机变量X与Y的协方差。记做Cov(X ,Y),即

                      Cov(X ,Y) = E{ [X - E(X)][( Y - E(Y)] }

    相关系数:


     根据方差的知识,对于任意两个随机变量X和Y,下列等式成立:

                    D(X + Y) = D(X) + D(Y) + 2Cov(X , Y)


     计算协方差的公式:Cov(X , Y) = E(XY) - E(X)E(Y)


     几个重要的性质

  • Cov(aX , bY) = abCov(X , Y) ,  a,b是常数
  • Cov(X1 + X2 , Y) = Cov(X1 , Y) + Cov(X2 ,Y)


     相关系数的两个重要性质


    相关系数是用来表征X、Y之间线性关系紧密程度的量。系数较大,X、Y线性相关程度较好;较小,X、Y线性相关程度较差。为零时,X、Y不相关。


4 矩、协方差矩阵


    定义:设(X ,Y)是二维随机变量,

    X的k阶原点矩,简称k阶矩:


    X的k阶中心矩:


    X和Y的k+l阶混合中心矩:


    随机变量(X1 , X2)的协方差矩阵

    (X1 , X2)有四个二阶中心矩,分别记为:

    c11 = E{  [X1 - E(X1)]^2 }  , c12 = E{ [X1 - E(X1)][X2 - E(X2)] } ,c12 = E{ [X2 - E(X2)][X1 - E(X1)] } , c22 = E{ [X2 - E(X2)]^2 }

    矩阵形式:


    n维随机变量(X1,X2,... ,Xn)的协方差矩阵:



    几个重要的性质

  • n维正态随机变量(X1,X2,... ,Xn)的每一个分量Xi , i = 1,2,......n 都是正态随机变量;反之,若X1,X2,... ,Xn 都是正态随机变量,且相互独立,则(X1,X2,... ,Xn)是n维正态随机变量。
  • n维随机变量(X1,X2,... ,Xn)服从n维正态分布的充要条件是X1,X2,... ,Xn的任意的线性组合  l1X1 + l2X2 + ... +lnXn  服从一维正态分布(其中l1,l2,...ln不全为零)。
  • 若(X1,X2,... ,Xn)服从n维正态分布,设Y1,Y2,... ,Yk是Xj(j = 1,2, .... , n)的线性函数,则(Y1,Y2,... ,Yk)也服从多维正态分布。
  • 设(X1,X2,... ,Xn)服从n维正态分布,则“X1,X2,... ,Xn相互独立”与“X1,X2,... ,Xn两两不相关”是等价的。


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值