概率论与数理统计教程(二)-随机变量及其分布02:随机变量的数学期望

§ 2.2 随机变量的数学期望
我们已经知道, 每个随机变量都有一个分布 (分布列、密度函数或分布函数),
不同的随机变量可能拥有不同的分布,
也可能拥有相同的分布.分布全面地描述了随机变量取值的统计规律性,
由分布可以算出有关随机事件的概率.
除此以外由分布还可以算得相应随机变量的均值、方差、分位数等特征数.
这些特征数各从一个侧面描述了分布的特征. 譬如,
初生繁儿的体重是一个随机变量, 其平均值就从一个侧面描述了体重的特征.
已知随机变量的分布,如何求其均值,是本节需要研究的问题.
本节将介绍随机变量最重要的特征数: 数学期望.
2.2.1 数学期望的概念
“期望” 在我们日常生活中常指心中期盼的愿望,而在概率论中,
数学期望源于历史上一个著名的分赌本问题.
例 2.2.1 (分赌本问题) 17 世纪中叶, 一位赌徒向法国数学家帕斯卡 (Pascal,
1623-1662) 提出一个使他苦依长久的分赌本问题: 甲、乙两赌徒赌技不相上下,
各出赌注 50 法郎, 每局中无平局.他们约定, 谁先赢三局, 则得全部奢本 100
法郎. 当甲赢了二局、乙赢了一局时,因故 (国王召见)要中止赌博.现问这 100
法郎如何分才算公平?
这个问题引起了不少人的兴趣.首先大家都认识到: 平均分对甲不公平,
全部归甲对乙不公平.合理的分法是, 按一定的比例,
甲多分些,乙少分些.所以问题的焦点在于:按怎样的比例来分? 以下有两种分法:
(1) 甲得 100 法郎中的 2 / 3 2 / 3 2/3, 乙得 100 法郎中的 1 / 3 1 / 3 1/3.
这是基于已赌局数: 甲赢了二局、乙玹了一局.
(2) 1654 年帕斯卡提出如下的分法:设想再赌下去, 则甲最终所得 X X X
为一个随机变量, 其可能取值为 0 或 100 . 再赌两局必可结束,
其结果不外乎以下四种情况之一:
甲甲、甲乙、乙甲、乙乙
其中"甲乙"表示第一局甲胜第二局乙胜. 在这四种情况中有三种可使甲获 100
法郎,只有一种情况 (乙乙)下甲获 0 法郎. 因为睹技不相上下, 所以甲获得 100
法郎的可能性为 3 / 4 3 / 4 3/4, 获得 0 法郎的可能性为 1 / 4 1 / 4 1/4, 即 X X X 的分布列为
X X X 0 100


P P P 0.25 0.75
经上述分析, 帕斯卡认为,甲的"期望"所得应为:
0 × 0.25 + 100 × 0.75 = 75 0 \times 0.25+100 \times 0.75=75 0×0.25+100×0.75=75 (法郎). 即甲得 75 法郎, 乙得 25 法郎.
这种分法不仅考虑了已赌局数, 而且还包括了对再赌下去的一种"期望", 它比 (1)
的分法更为合理.
这就是数学期望这个名称的由来,其实这个名称称为
"均值"更形象易懂.对上例而言, 也就是再赌下去的话, 甲"平均"可以赢 75 法郎.
现在我们来逐步分析如何由分布来求 “均值”.
(1)算术平均 如果有 n n n 个数 x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn, 那么求这
n n n 个数的算术平均是很简单的事, 只需将此 n n n 个数相加后除 n n n 即可.
(2) 加权平均 如果这 n n n 个数中有相同的, 不妨设其中有 n i n_{i} ni 个取值为
x i , i = 1 x_{i}, i=1 xi,i=1, 2 , ⋯   , k 2, \cdots, k 2,,k. 将其列表为
取值 x 1 x_{1} x1 x 2 x_{2} x2 ⋯ \cdots x k x_{k} xk


频数 n 1 n_{1} n1 n 2 n_{2} n2 ⋯ \cdots n k n_{k} nk
频率 n 1 / n n_{1} / n n1/n n 2 / n n_{2} / n n2/n ⋯ \cdots n k / n n_{k} / n nk/n
则其 "均值"应为
1 n ∑ i = 1 k n i x i = ∑ i = 1 k n i n x i . \frac{1}{n} \sum_{i=1}^{k} n_{i} x_{i}=\sum_{i=1}^{k} \frac{n_{i}}{n} x_{i} . n1i=1knixi=i=1knnixi.
其实这个加权平均的 “权数” n i n \frac{n_{i}}{n} nni 就是出现数值 x i x_{i} xi 的频率,
而频率在 n n n 很大时, 就稳定在其概率附近.
(3) 对于一个离散随机变量 X X X, 如果其可能取值为
x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn. 若将这 n n n 个数相加后除 n n n 作为 “均值”,
则肯定是不妥的. 其原因在于 X X X 取各个值的概率一般是不同的,
概率大的出现的机会就大, 则在计算中其权也应该大.
而上例分配赌本问题启示我们: 用取值的概率作为一种 “权数”
作加权平均是十分合理的.
经以上分析,我们就可以给出数学期望的定义.
2.2.2 数学期望的定义
定义 2.2.1 设离散随机变量 X X X 的分布列为
p ( x i ) = P ( X = x i ) , i = 1 , 2 , ⋯   , n , ⋯   . p\left(x_{i}\right)=P\left(X=x_{i}\right), i=1,2, \cdots, n, \cdots . p(xi)=P(X=xi),i=1,2,,n,.
如果
∑ i = 1 ∞ ∣ x i ∣ p ( x i ) < ∞ , \sum_{i=1}^{\infty}\left|x_{i}\right| p\left(x_{i}\right)<\infty, i=1xip(xi)<,
则称
E ( X ) = ∑ i = 1 ∞ x i p ( x i ) E(X)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right) E(X)=i=1xip(xi)
为随机变量 X X X 的数学期望, 或称为该分布的数学期望, 简称期望或均值.
若级数 ∑ i = 1 ∞ ∣ x i ∣ p ( x i ) \sum_{i=1}^{\infty}\left|x_{i}\right| p\left(x_{i}\right) i=1xip(xi)
不收玫, 则称 X X X 的数学期望不存在.
以上定义中, 要求级数绝对收玫的目的在于使数学期望唯一.
因为随机变量的取值可正可负, 取值次序可先可后, 由无穷级数的理论知道,
如果此无穷级数绝对收玫,则可保证其和不受次序变动的影响.
由于有限项的和不受次序变动的影响,
故取有限个可能值的随机变量的数学期望总是存在的.
连续随机变量数学期望的定义和含义完全类似于离散随机变量场合,
只要将求和改为求积分即可.
定义 2.2.2 设连续随机变量 X X X 的密度函数为 p ( x ) p(x) p(x). 如果
∫ − ∞ ∞ ∣ x ∣ p ( x ) d x < ∞ , \int_{-\infty}^{\infty}|x| p(x) \mathrm{d} x<\infty, xp(x)dx<,
则称
E ( X ) = ∫ − ∞ ∞ x p ( x ) d x E(X)=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x E(X)=xp(x)dx
X X X 的数学期望, 或称为该分布 p ( x ) p(x) p(x) 的数学期望,简称期望或均值. 若
∫ − ∞ ∞ ∣ x ∣ p ( x ) d x \int_{-\infty}^{\infty}|x| p(x) \mathrm{d} x xp(x)dx不收敛,则称 X X X
的数学期望不存在.
数学期望 E ( X ) E(X) E(X) 的物理解释是重心. 若把概率
p ( x i ) = P ( X = x i ) p\left(x_{i}\right)=P\left(X=x_{i}\right) p(xi)=P(X=xi) 看作点 x i x_{i} xi 上的质量,
概率分布看作质量在 x x x 轴上的分布, 则 X X X 的数学期望 E ( X ) E(X) E(X)
就是该质量分布的重心所在位置, 详见图
2.2.1.外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“336px”}
图 2.2.1 概率质量模型: 同时拋五颗敛子, 6 点出现个数 X X X 的数学期望
E ( X ) = 5 / 6 E(X)=5 / 6 E(X)=5/6 就是重心所在的位置
数学期望的理论意义是深刻的,
它是消除随机性的主要手段,这在本书以后各章中会清楚地看出.
数学期望在实际中应用广泛, E ( X ) E(X) E(X) 常作为 X X X 的分布的代表 (一种统计指标)
参与同类指标的比较. 如一盘磁带上的缺陷数有多有少, 有随机性, 不好比较,
但多盘磁带上的平均缺陷数 (期望值) 可以比较,
其越少越好.下面的实际例子将告诉人们数学期望应用的广泛性.
例 2.2.2 在一个人数为 N N N 的人群中普查某种疾病, 为此要抽验 N N N 个人的血.
如果将每个人的血分别检验, 则共需检验 N N

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值