机器学习技法课程学习笔记5-- Kernel Logistic Regression

上节课我们主要介绍了Soft-Margin SVM,即如果允许有分类错误的点存在,那么在原来的Hard-Margin SVM中添加新的惩罚因子C,修正原来的公式,得到新的 αn 值。最终的到的 αn 有个上界,上界就是C。Soft-Margin SVM权衡了large-margin和error point之前的关系,目的是在尽可能犯更少错误的前提下,得到最大分类边界。本节课将把Soft-Margin SVM和我们之前介绍的Logistic Regression联系起来,研究如何使用kernel技巧来解决更多的问题。

Soft-Margin SVM as Regularized Model

先复习一下我们已经介绍过的内容,我们最早开始讲了Hard-Margin Primal的数学表达式,然后推导了Hard-Margin Dual形式。后来,为了允许有错误点的存在(或者noise),也为了避免模型过于复杂化,造成过拟合,我们建立了Soft-Margin Primal的数学表达式,并引入了新的参数C作为权衡因子,然后也推导了其Soft-Margin Dual形式。因为Soft-Margin Dual SVM更加灵活、便于调整参数,所以在实际应用中,使用Soft-Margin Dual SVM来解决分类问题的情况更多一些。

这里写图片描述

Soft-Margin Dual SVM有两个应用非常广泛的工具包,分别是Libsvm和Liblinear。 Libsvm和Liblinear都是国立台湾大学的Chih-Jen Lin博士开发的,Chih-Jen Lin的个人网站为:Welcome to Chih-Jen Lin’s Home Page

下面我们再来回顾一下Soft-Margin SVM的主要内容。我们的出发点是用 ξn 来表示margin violation,即犯错值的大小,没有犯错对应的 ξn=0 。然后将有条件问题转化为对偶dual形式,使用QP来得到最佳化的解。

从另外一个角度来看, ξn 描述的是点 (xn,yn)  距离 yn(wTzn+b)=1 的边界有多远。第一种情况是violating margin,即不满足 yn(wTzn+b)1 。那么 ξn 可表示为: ξn=1yn(wTzn+b)>0 。第二种情况是not violating margin,即点 (xn,yn)  在边界之外,满足 yn(wTzn+b)1 的条件,此时 ξn=0 。我们可以将两种情况整合到一个表达式中,对任意点:

ξn=max(1yn(wTzn+b),0)

上式表明,如果有voilating margin,则 1yn(wTzn+b)>0 ξn=1yn(wTzn+b) ;如果not violating margin,则 1yn(wTzn+b)<0 ξn=0 。整合之后,我们可以把Soft-Margin SVM的最小化问题写成如下形式:

12wTw+Cn=1Nmax(1yn(wTzn+b),0)

经过这种转换之后,表征犯错误值大小的变量 ξn 就被消去了,转而由一个max操作代替。

这里写图片描述

为什么要将把Soft-Margin SVM转换为这种unconstrained form呢?我们再来看一下转换后的形式,其中包含两项,第一项是w的内积,第二项关于y和w,b,z的表达式,似乎有点像一种错误估计 err^ ,则类似这样的形式:

min 12wTw+Cerr^

看到这样的形式我们应该很熟悉,因为之前介绍的L2 Regularization中最优化问题的表达式跟这个是类似的:

min λNwTw+1Nerr

这里写图片描述

这里提一下,既然unconstrained form SVM与L2 Regularization的形式是一致的,而且L2 Regularization的解法我们之前也介绍过,那么为什么不直接利用这种方法来解决unconstrained form SVM的问题呢?有两个原因。一个是这种无条件的最优化问题无法通过QP解决,即对偶推导和kernel都无法使用;另一个是这种形式中包含的max()项可能造成函数并不是处处可导,这种情况难以用微分方法解决。

我们在第一节课中就介绍过Hard-Margin SVM与Regularization Model是有关系的。Regularization的目标是最小化 Ein ,条件是 wTwC ,而Hard-Margin SVM的目标是最小化 wTw ,条件是 Ein=0 ,即它们的最小化目标和限制条件是相互对调的。对于L2 Regularization来说,条件和最优化问题结合起来,整体形式写成:

λNwTw+Ein

而对于Soft-Margin SVM来说,条件和最优化问题结合起来,整体形式写成:

12wTw+CNEin^

这里写图片描述

通过对比,我们发现L2 Regularization和Soft-Margin SVM的形式是相同的,两个式子分别包含了参数 λ 和C。Soft-Margin SVM中的large margin对应着L2 Regularization中的short w,也就是都让hyperplanes更简单一些。我们使用特别的 err^ 来代表可以容忍犯错误的程度,即soft margin。L2 Regularization中的 λ 和Soft-Margin SVM中的C也是相互对应的, λ 越大,w会越小,Regularization的程度就越大;C越小, Ein^ 会越大,相应的margin就越大。所以说增大C,或者减小 λ ,效果是一致的,Large-Margin等同于Regularization,都起到了防止过拟合的作用。

这里写图片描述

建立了Regularization和Soft-Margin SVM的关系,接下来我们将尝试看看是否能把SVM作为一个regularized的模型进行扩展,来解决其它一些问题。

SVM versus Logistic Regression

上一小节,我们已经把Soft-Margin SVM转换成无条件的形式:

这里写图片描述

上式中第二项的 max(1yn(wTzn+b),0) 倍设置为 err^ 。下面我们来看看 err^ 与之前再二元分类中介绍过的 err0/1 有什么关系。

对于 err0/1 ,它的linear score  s=wTzn+b ,当 ys0 时, err0/1=0 ;当 ys<0 时, err0/1=1 ,呈阶梯状,如下图所示。而对于 err^ ,当 ys0 时, err0/1=0 ;当 ys<0 时, err0/1=1ys ,呈折线状,如下图所示,通常把 err^svm 称为hinge error measure。比较两条error曲线,我们发现 err^svm 始终在 err0/1 的上面,则 err^svm 可作为 err0/1 的上界。所以,可以使用 err^svm 来代替 err0/1 ,解决二元线性分类问题,而且 err^svm 是一个凸函数,使它在最佳化问题中有更好的性质。

这里写图片描述

紧接着,我们再来看一下logistic regression中的error function。逻辑回归中, errsce=log2(1+exp(ys)) ,当ys=0时, errsce=1 。它的err曲线如下所示。

这里写图片描述

很明显, errsce 也是 err0/1 的上界,而 errsce err^svm 也是比较相近的。因为当ys趋向正无穷大的时候, errsce err^svm 都趋向于零;当ys趋向负无穷大的时候, errsce err^svm 都趋向于正无穷大。正因为二者的这种相似性,我们可以把SVM看成是L2-regularized logistic regression。

总结一下,我们已经介绍过几种Binary Classification的Linear Models,包括PLA,Logistic Regression和Soft-Margin SVM。PLA是相对简单的一个模型,对应的是 err0/1 ,通过不断修正错误的点来获得最佳分类线。它的优点是简单快速,缺点是只对线性可分的情况有用,线性不可分的情况需要用到pocket算法。Logistic Regression对应的是 errsce ,通常使用GD/SGD算法求解最佳分类线。它的优点是凸函数 errsce 便于最优化求解,而且有regularization作为避免过拟合的保证;缺点是 errsce 作为 err0/1 的上界,当ys很小(负值)时,上界变得更宽松,不利于最优化求解。Soft-Margin SVM对应的是 err^svm ,通常使用QP求解最佳分类线。它的优点和Logistic Regression一样,凸优化问题计算简单而且分类线比较“粗壮”一些;缺点也和Logistic Regression一样,当ys很小(负值)时,上界变得过于宽松。其实,Logistic Regression和Soft-Margin SVM都是在最佳化 err0/1 的上界而已。

这里写图片描述

至此,可以看出,求解regularized logistic regression的问题等同于求解soft-margin SVM的问题。反过来,如果我们求解了一个soft-margin SVM的问题,那这个解能否直接为regularized logistic regression所用?来预测结果是正类的几率是多少,就像regularized logistic regression做的一样。我们下一小节将来解答这个问题。

SVM for Soft Binary Classification

接下来,我们探讨如何将SVM的结果应用在Soft Binary Classification中,得到是正类的概率值。

第一种简单的方法是先得到SVM的解 (bsvm,wsvm) ,然后直接代入到logistic regression中,得到 g(x)=θ(wTsvmx+bsvm) 。这种方法直接使用了SVM和logistic regression的相似性,一般情况下表现还不错。但是,这种形式过于简单,与logistic regression的关联不大,没有使用到logistic regression中好的性质和方法。

第二种简单的方法是同样先得到SVM的解 (bsvm,wsvm) ,然后把 (bsvm,wsvm) 作为logistic regression的初始值,再进行迭代训练修正,速度比较快,最后,将得到的b和w代入到g(x)中。这种做法有点显得多此一举,因为并没有比直接使用logistic regression快捷多少。

这里写图片描述

这两种方法都没有融合SVM和logistic regression各自的优势,下面构造一个模型,融合了二者的优势。构造的模型g(x)表达式为:

g(x)=θ(A(wTsvmΦ(x)+bsvm)+B)

与上述第一种简单方法不同,我们额外增加了放缩因子A和平移因子B。首先利用SVM的解 (bsvm,wsvm) 来构造这个模型,放缩因子A和平移因子B是待定系数。然后再用通用的logistic regression优化算法,通过迭代优化,得到最终的A和B。一般来说,如果 (bsvm,wsvm) 较为合理的话,满足A>0且 B0

这里写图片描述

那么,新的logistic regression表达式为:

这里写图片描述

这个表达式看上去很复杂,其实其中的 (bsvm,wsvm) 已经在SVM中解出来了,实际上的未知参数只有A和B两个。归纳一下,这种Probabilistic SVM的做法分为三个步骤:

这里写图片描述

这种soft binary classifier方法得到的结果跟直接使用SVM classifier得到的结果可能不一样,这是因为我们引入了系数A和B。一般来说,soft binary classifier效果更好。至于logistic regression的解法,可以选择GD、SGD等等。

Kernel Logistic Regression

上一小节我们介绍的是通过kernel SVM在z空间中求得logistic regression的近似解。如果我们希望直接在z空间中直接求解logistic regression,通过引入kernel,来解决最优化问题,又该怎么做呢?SVM中使用kernel,转化为QP问题,进行求解,但是logistic regression却不是个QP问题,看似好像没有办法利用kernel来解决。

我们先来看看之前介绍的kernel trick为什么会work,kernel trick就是把z空间的内积转换到x空间中比较容易计算的函数。如果w可以表示为z的线性组合,即 w=Nn=1βnzn 的形式,那么乘积项 wTz=Nn=1βnzTnz=Nn=1βnK(xn,x) ,即其中包含了z的内积。也就是w可以表示为z的线性组合是kernel trick可以work的关键。

我们之前介绍过SVM、PLA包扩logistic regression都可以表示成z的线性组合,这也提供了一种可能,就是将kernel应用到这些问题中去,简化z空间的计算难度。

这里写图片描述

有这样一个理论,对于L2-regularized linear model,如果它的最小化问题形式为如下的话,那么最优解 w=Nn=1βnzn

这里写图片描述

下面给出简单的证明,假如最优解 w=w||+w 。其中, w|| w 分别是平行z空间和垂直z空间的部分。我们需要证明的是 w=0 。利用反证法,假如 w0 ,考虑 w w|| 的比较。第一步先比较最小化问题的第二项: err(y,wTzn)=err(yn,(w||+w)Tzn=err(yn,wT||zn) ,即第二项是相等的。然后第二步比较第一项: wTw=wT||w||+2wT||w+wTw>wT||w|| ,即 w 对应的L2-regularized linear model值要比 w|| 大,这就说明 w 并不是最优解,从而证明 w 必然等于零,即 w=Nn=1βnzn 一定成立, w 一定可以写成z的线性组合形式。

这里写图片描述

经过证明和分析,我们得到了结论是任何L2-regularized linear model都可以使用kernel来解决。

现在,我们来看看如何把kernel应用在L2-regularized logistic regression上。上面我们已经证明了 w 一定可以写成z的线性组合形式,即 w=Nn=1βnzn 。那么我们就无需一定求出 w ,而只要求出其中的 βn 就行了。怎么求呢?直接将 w=Nn=1βnzn 代入到L2-regularized logistic regression最小化问题中,得到:

这里写图片描述

这里写图片描述

上式中,所有的w项都换成 βn 来表示了,变成了没有条件限制的最优化问题。我们把这种问题称为kernel logistic regression,即引入kernel,将求w的问题转换为求 βn 的问题。

从另外一个角度来看Kernel Logistic Regression(KLR):

这里写图片描述

上式中log项里的 Nm=1βmK(xm,xn) 可以看成是变量 β K(xm,xn) 的内积。上式第一项中的 Nn=1Nm=1βnβmK(xn,xm) 可以看成是关于 β 的正则化项 βTKβ 。所以,KLR是 β 的线性组合,其中包含了kernel内积项和kernel regularizer。这与SVM是相似的形式。

但值得一提的是,KLR中的 βn 与SVM中的 αn 是有区别的。SVM中的 αn 大部分为零,SV的个数通常是比较少的;而KLR中的 βn 通常都是非零值。

总结

本节课主要介绍了Kernel Logistic Regression。首先把Soft-Margin SVM解释成Regularized Model,建立二者之间的联系,其实Soft-Margin SVM就是一个L2-regularization,对应着hinge error messure。然后利用它们之间的相似性,讨论了如何利用SVM的解来得到Soft Binary Classification。方法是先得到SVM的解,再在logistic regression中引入参数A和B,迭代训练,得到最佳解。最后介绍了Kernel Logistic Regression,证明L2-regularized logistic regression中,最佳解 w 一定可以写成z的线性组合形式,从而可以将kernel引入logistic regression中,使用kernel思想在z空间直接求解L2-regularized logistic regression问题。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习技法》课程

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值