面试问题记录(RAG方向)

本文讨论了一个项目中采用的大模型,涉及英语和中文语料的处理,结合了BM25和向量检索技术。重点讲解了实体召回、嵌入模型微调、问答模型调整以及LORA原理的应用。同时提到在处理冗余信息和多样抽取目标时的优化策略,以及对NL2SQL的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 简单自我介绍
  2. 项目中使用了什么大模型? 语料是英文多还是中文多?
  3. 项目中使用了哪种检索方法
    BM25和向量方法如何结合?
    使用BM25使用了什么分词器??
    有没有针对特定实体进行召回??
    还使用了哪些技巧来提升召回的效果??
  4. 向量召回时使用的嵌入模型是什么??
    有没有对用于向量方法召回的模型进行微调??
  5. 有没有对问答模型进行微调?
    使用了什么微调方法?
    采用了什么手段来提升微调效果??
    简要说明LORA的原理??
    了解ptuning或其它的微调方法吗??
  6. 是否使用了Llamalndex?
    没有使用的原因??
  7. 进行 信息抽取 时,文本中冗余信息较多,抽取目标种类也很多,这种情况使用大模型进行抽取有哪些优化思路??
  8. 是否了解过 NL2SQL?
### 关于RAG(检索增强生成)的常见面试问题及其答案 #### 1. **什么是RAG(检索增强生成)?** RAG是一种结合信息检索和自然语言生成的技术,旨在通过动态检索外部数据来提高生成模型的质量。其核心思想是在生成过程中引入实时检索的相关文档片段,从而提升生成内容的准确性与多样性[^3]。 ```python def rag_process(query, retriever, generator): retrieved_docs = retriever.retrieve(query) # 检索相关文档 generated_answer = generator.generate(retrieved_docs) # 基于检索结果生成回答 return generated_answer ``` --- #### 2. **RAG的工作流程是什么样的?** RAG的工作流程主要包括以下几个部分: - 用户输入一个问题或查询。 - 检索器基于输入问题,在文档集合中找到相关的文档或段落。 - 对检索到的内容进行筛选,提取最相关的几条信息。 - 利用生成模型,将这些信息作为上下文,生成高质量的回答。 - 将最终生成的结果返回给用户。 --- #### 3. **RAG相较于传统生成模型的优势有哪些?** 相比传统的端到端生成模型,RAG具有以下优势: - 动态更新能力:由于依赖外部数据库,RAG可以随时获取最新的信息,而无需重新训练模型。 - 更高的精确度:通过检索真实世界的数据,减少了生成错误的可能性。 - 可解释性强:生成过程中的每一步都可以追溯至具体的检索结果[^1]。 --- #### 4. **构建RAG应用程序时可能遇到哪些挑战?** 构建RAG应用的主要挑战包括: - **集成复杂性**:需要协调多个模块(如检索器、生成器等),确保它们无缝协作[^2]。 - **可扩展性**:随着数据规模的增长,检索效率可能会下降。采用矢量数据库可以帮助解决这一问题[^4]。 - **数据质量问题**:如果检索到的数据不准确或存在噪声,则会影响最终生成的效果。 --- #### 5. **如何优化RAG系统的性能?** 可以通过以下方法优化RAG系统的表现: - 提升检索质量:改进检索算法,增加召回率的同时减少误报率。 - 改善生成效果:微调生成模型参数,使其更好地适应特定领域的需求。 - 缓解延迟问题:利用缓存机制存储高频请求的结果,降低响应时间。 - 数据清洗与标注:确保用于检索的语料库经过严格筛选,剔除低质量内容。 --- ### 示例代码展示RAG基本框架 以下是简化版的RAG实现逻辑: ```python class Retriever: def retrieve(self, query): # 实现具体检索逻辑 pass class Generator: def generate(self, context): # 实现具体生成逻辑 pass def run_rag(query, retriever: Retriever, generator: Generator): docs = retriever.retrieve(query) answer = generator.generate(docs) return answer ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值