面试问题记录(RAG方向)

本文讨论了一个项目中采用的大模型,涉及英语和中文语料的处理,结合了BM25和向量检索技术。重点讲解了实体召回、嵌入模型微调、问答模型调整以及LORA原理的应用。同时提到在处理冗余信息和多样抽取目标时的优化策略,以及对NL2SQL的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 简单自我介绍
  2. 项目中使用了什么大模型? 语料是英文多还是中文多?
  3. 项目中使用了哪种检索方法
    BM25和向量方法如何结合?
    使用BM25使用了什么分词器??
    有没有针对特定实体进行召回??
    还使用了哪些技巧来提升召回的效果??
  4. 向量召回时使用的嵌入模型是什么??
    有没有对用于向量方法召回的模型进行微调??
  5. 有没有对问答模型进行微调?
    使用了什么微调方法?
    采用了什么手段来提升微调效果??
    简要说明LORA的原理??
    了解ptuning或其它的微调方法吗??
  6. 是否使用了Llamalndex?
    没有使用的原因??
  7. 进行 信息抽取 时,文本中冗余信息较多,抽取目标种类也很多,这种情况使用大模型进行抽取有哪些优化思路??
  8. 是否了解过 NL2SQL?
### RAG(检索增强生成)相关面试问题及答案 #### 1. **RAG 的核心概念是什么?** RAG 是一种通过引入外部知识源来提升生成模型性能的技术框架[^3]。其核心在于结合检索模块和生成模块,从而在生成过程中动态获取并利用与当前任务最相关的上下文信息。 ```python class RetrievalAugmentedGeneration: def __init__(self, knowledge_base, retrieval_model, generation_model): self.knowledge_base = knowledge_base self.retrieval_model = retrieval_model self.generation_model = generation_model def generate(self, query): retrieved_docs = self.retrieval_model(query, self.knowledge_base) prompt = f"Query: {query}\nContext: {retrieved_docs}" response = self.generation_model(prompt) return response ``` --- #### 2. **Prompt 工程在 RAG 中的作用是什么?需要注意哪些常见问题?** Prompt 工程是 RAG 的关键环节之一,在设计 Prompt 时可以明确规定生成风格、引用方式等内容[^1]。然而,实际操作中可能存在以下问题: - 提示不够明确可能导致模型随意编造内容; - 过于冗长的提示可能因长度限制被截断; - 缺乏“拒绝回答”机制使得模型无法处理未知领域的问题。 因此,需不断优化 Prompt 设计以达到既简洁又全面的效果。 --- #### 3. **什么是“检索代理”(Retrieval Agent),它与传统 RAG 流程的区别在哪里?** “检索代理”是一种更智能化的检索工具,能够主动分析查询需求并选取最优的知识片段。相比传统的静态检索-RAG 结构,“检索代理”具备更强的目标导向能力,可以根据具体场景调整检索策略,甚至模拟人类思维过程完成复杂推理任务。 --- #### 4. **RAG 架构中的主要组成部分有哪些?它们各自的功能是什么?** 典型的 RAG 系统通常由以下几个部分构成: - 外部知识库:存储大量结构化或非结构化的背景资料供检索调用。 - 检索模型:负责依据输入请求快速定位关联度最高的若干条目。 - 提示模板(Prompt Template):定义如何将原始询问连同查找到的信息一起传递给下游生成器。 - 生产模型(Generative Model):最终基于综合考虑后的全部线索构建自然流畅的回答语句。 --- #### 5. **市场上的主流 RAG 实现框架都有哪些特点?** 目前较为知名的几个开源项目如下所示: - LangChain:支持多种预训练语言模型接入,并提供了灵活易扩展的基础架构。 - LlamaIndex:专注于简化从零搭建个性化搜索引擎到集成进对话系统的全过程。 - DSPy:特别强调分布式部署下的高效协作特性。 每种方案各有侧重方向,开发者应根据自身业务诉求合理选用适合的产品形态。 --- #### 6. **除了基础版之外还有哪些高级形式的 RAG 技术值得探索学习呢?** 随着研究深入出现了不少改进型变体版本比如智能体RAG(Agent-based RAG), 它允许单次交互内多次循环执行子任务直至满足预期目标为止; 另外图谱RAG(Graph-based RAG) 则擅长挖掘实体间潜在关系链路进而辅助决策制定. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值