定义
Trip assignment is a process used to allocate trip interchanges developed in the trip distribution modal split stages to a transportation system (road and/or transit). It is also called “route split” stage.
The trip assignment stage is important not only as the fourth stage of the model, but also for trip distribution and model split stages as in the trip assignment stage the generalized cost of travel is determined and then used in the other stages.
输入输出
- The main input
Demand: the Origin-Destination matrix,usually for one(peak)hour.
Supply: the network description and functions. - The main output
The level of service,travel time,cost.
Global network parameters.
Origin and destination of trips using a certain link or a combination of links(e.g.a screen line).This is called “Selected Link Analysis”.
Average trip length/cost for the whole area,a subarea or a facility.
影响交通量分配的因素
确定最短路径Shortest path identification
This approach is based on the premise(提)that travellers usually take the shortest route between their origins and destinations.
[[运筹学#最短路算法|最短路径算法]]:Dijkstra法、矩阵迭代法、Floyd-Warshalli法等。
使用方法
全有全无分配法
容量限制分配法
User equilibrium Assignment(用户平衡分配):假设所有用户都清楚网络的状态,最终没有用户能够单方面改变策略使自身成本更低。(也就是同一OD对之间所有被选择的路径具有相等的成本,并且不大于未被选择的路径)
Traffic on a network distributes itself in such a way that the travel costs on all routes used from any origin to any destination are equal while all unassumed routes have equal or greater travel costs.
System Optimum Assignment(系统最优分配):理想条件下,拥挤路网上的交通流应该按照平均或总的出行成本最小为依据来分配。