干线信号协调控制(Arterial signal coordinated control)是将干线上的若干相邻信号交叉口的信号配时统一考虑,使得干线上的车辆行驶到交叉口时遇到尽可能多的绿灯时间,使车辆在干线上能够通畅行驶的一种控制方式。
绿波交通
绿波交通,是指车流沿某条干线行进的过程中,接连遇到连续的绿灯信号,畅通无阻地通过沿途交叉口的一种交通运行方式。
-
同步式协调系统:连接在一个系统中的全部信号,在同一时刻,对于干线车流显示相同的灯色。当车辆在相邻交叉口间的行驶时间等于信号周期时,这些相邻交叉口正好组成同步式协调系统。
-
交互式协调系统:连接在一个系统中的全部信号,在同一时刻,对于干线车流显示相反的灯色。当车辆在相邻交叉口间的行驶时间等于信号周期的一半时,正好组成交互式协调系统。
-
续进式协调系统:根据干线上的平均运行车速与交叉口的间距,确定各相邻交叉口的相位差,使在上游交叉口的绿灯启亮后开出的车辆,以平均车速行驶,可正好在下游交叉口绿灯启亮时到达。
基本参数
相位差 Offset
相邻两交叉口绿灯起始时刻差,称为相位差 τ \tau τ,也称绿灯起步时差。相位差有单向与双向之分。
对于双向交通,双向相位差应满足 τ 12 + τ 21 = C \tau_{12}+\tau_{21}=C τ12+τ21=C即上下行相位差之和等于共同信号周期。 ^b1f9a6
共同信号周期
在进行信号协调控制时,首先要求参与信号协调的各交叉口均采取统一的信号周期,称之为共同信号周期。其作用是使交叉口之间的相位差保待恒定。
绿灯时间
干线信号协调控制应考虑的信号绿灯时间有:各交叉口在干线方向上的最小与最大绿灯时间,以及与干线相交道路方向上的各交叉口的最小绿灯时间。
配时参数确定
共同信号周期
通常取干线上交通负荷最高的交叉口(也称为关键交叉口)作为信号协调的参考点。采用关键交叉口的[[单点控制#最佳信号周期 Optimum signal cycle|最佳周期]],作为信号协调的共同信号周期。
绿灯时间
下文绿灯时间均为对应的有效绿灯时间,假设:
沿干线(或主要道路)方向为相位1,沿次要道路方向为相位2;
关键交叉口为交叉口0,非关键交叉口为交叉口1;
G
e
0
G_{e0}
Ge0:关键交叉口干线方向绿灯时间
G
e
1
m
i
n
G_{e1min}
Ge1min:非关键交叉口干线方向最小绿灯时间
G
e
1
m
a
x
G_{e1max}
Ge1max:非关键交叉口干线方向最大绿灯时间
G
e
2
m
i
n
G_{e2min}
Ge2min:次要道路上最小绿灯时间
关键交叉口干线方向绿灯时间 G e 0 G_{e0} Ge0
G
e
0
=
(
C
−
L
)
y
0
Y
G_{e0}=(C-L)\frac {y_0}{Y}
Ge0=(C−L)Yy0
干线绿波带宽
B
=
G
e
0
B=G_{e0}
B=Ge0
非关键交叉口干线方向绿灯时间
-
G
e
1
m
i
n
G_{e1min}
Ge1min
非关键交叉口相位1绿灯时间应满足干线协调方向的绿波带宽度的要求
G e 1 m i n = B = G e 0 G_{e1min}=B=G_{e0} Ge1min=B=Ge0 -
G
e
1
m
a
x
G_{e1max}
Ge1max
考虑到车队的离散和可能产生的附加车流,可以适当加长非关键交叉口1干线方向上的绿灯时间,但同时又要保证非关键交叉口1次要道路方向上的最小绿灯时间 G e 2 m i n G_{e2min} Ge2min,它是行人安全通过干线人行横道所需要的时间。
此外,还应使相位2饱和度 x 2 x_2 x2不要过高,一般不希望 x 2 x_2 x2大于0.9。
G e 2 m i n = u e 2 m i n × C = y 2 x 2 × C = y 2 0.9 × C G_{e2min}=u_{e2min}\times C=\frac {y_2}{x_2}\times C=\frac{y_2}{0.9} \times C Ge2min=ue2min×C=x2y2×C=0.9y2×C
G e 1 m a x = C − G e 2 m i n − L G_{e1max}=C-G_{e2min}-L Ge1max=C−Ge2min−L
绿波推进速度 V V V
相位差确定
单向相位差
在单向交通运行情况下,单向相位差的取值不受任何约束条件的限制。但单向相位差的不同取值,将直接影响到干线信号协调的控制效果。
理想情况下,可使
τ
=
t
\tau=t
τ=t,以获得最大的绿波带宽。
t
t
t为车队在路段的行驶时间。
t
=
L
V
t=\frac L V
t=VL
双向相位差
在双向交通运行情况下,双向相位差的取值受[[干线控制#^b1f9a6|约束条件]]的限制。
要想获得双向绿波交通,理想条件是同时满足以下三个公式:
τ
12
=
t
12
m
o
d
(
C
)
,
τ
21
=
t
21
m
o
d
(
C
)
\tau_{12}=t_{12}mod(C),\tau_{21}=t_{21}mod(C)
τ12=t12mod(C),τ21=t21mod(C)和
τ
12
+
τ
21
=
C
\tau_{12}+\tau_{21}=C
τ12+τ21=C
当上、下行行驶速度相等,
V
1
=
V
2
=
V
V_1=V_2=V
V1=V2=V,上述公式可改写为
t
=
k
×
C
2
t=k\times \frac C 2
t=k×2C
t
12
=
t
21
=
t
=
L
V
t_{12}=t_{21}=t=\frac L V
t12=t21=t=VL
即,当路段行驶时间
t
t
t为共同信号周期
C
C
C整数倍的
1
2
\frac 1 2
21时,可以获得理想双向绿波