RAG系统进阶(五)文本分割优化技巧及代码

本文探讨了RAG系统中文本分割的优化技巧,包括部分重叠式切割以保持上下文完整,检索后排序以提高准确性,以及混合检索(Hybrid Search)结合稀疏和稠密表示的优点。通过Reciprocal Rank Fusion(RRF)实现RAG-Fusion,提升检索精度。文中还提供了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

        前边在介绍RAG系统时提到了文本分割(或分段)的作用和重要性。也提到了分段后所带来的一些问题,比如由于分段导致检索出来的TOP-n的结果可能未包含完整的答案。

  1. 粒度太大可能导致检索不精准,粒度太小可能导致信息不全面
  2. 问题的答案可能跨越两个片段

一、改进方案 

1.1按一定粒度,部分重叠式的切割文本,使上下文更完整

英文文档的重叠式文本实现。

from nltk.tokenize import sent_tokenize


def split_text(paragraphs, chunk_size=300, overlap_size=100):
    '''按指定 chunk_size 和 overlap_size 交叠割文本'''
    sentences = [s.strip() for p in paragraphs for s in sent_tokenize(p)]
    chunks = []
    i = 0
    while i < len(sentences):
        chunk = sentences[i]
        overlap = ''
        prev_len = 0
        prev = i - 1
        # 向前计算重叠部分
        while prev >= 0 and len(sentences[prev])+len(overlap) <= overlap_size:
            overlap = sentences[prev] + ' ' + overlap
            prev -= 1
        chunk = overlap+chunk
        next = i + 1
        # 向后计算当前chunk
        while next < len(sentences) and len(sentences[next])+len(chunk) <= chunk_size:
            chunk = chunk + ' ' + sentences[next]
            next += 1
        chunks.append(chunk)
        i = next
    return chunks

中文sent_tokenize实现:

import re
import jieba
import nltk
from nltk.corpus import stopwords

# nltk.download('stopwords')

def to_keywords(input_string):
    """将句子转成检索关键词序列"""
    # 按搜索引擎模式分词
    word_tokens = jieba.cut_for_search(input_string)
    # 加载停用词表
    stop_words = set(stopwords.words('chinese'))
    # 去除停用词
    filtered_sentence = [w for w in word_tokens if not w in stop_words]
    return ' '.join(filtered_sentence)

def sent_tokenize(input_string):
    """按标点断句"""
    # 按标点切分
    sentences = re.split(r'(?<=[。!?;?!])', input_string)
    # 去掉空字符串
    return [sentence for sentence in sentences if sentence.strip()]


if "__main__" == __name__:
    # 测试关键词提取
    print(to_keywords("小明硕士毕业于中国科学院计算所,后在日本京都大学深造"))
    # 测试断句
    print(sent_tokenize("这是,第一句。这是第二句吗?是的!啊"))

测试示例:

chunks = split_text(paragraphs, 300, 100)


# 创建一个向量数据库对象
vector_db = MyVectorDBConnector("demo_text_split", get_embeddings)
# 向向量数据库中添加文档
vector_db.add_documents(chunks)
# 创建一个RAG机器人
bot = RAG_Bot(
    vector_db,
    llm_api=get_completion
)


# user_query = "llama 2有商用许可协议吗"
user_query="llama 2 chat有多少参数"

search_results = vector_db.search(user_query, 2)
for doc in search_results['documents'][0]:
    print(doc+"\n")

response = bot.chat(user_query)
print("====回复====")
print(response)
1.2 检索后排序

解决问题:有时最合适的答案不一定排在检索的最前面,截断后会导致返回结果不完全准确。

方案:

  1. 检索时招回一部分文本
  2. 通过一个排序模型对 query 和 document 重新打分排序

安装模型 

pip install sentence_transformers

使用模型 

from sentence_transformers import CrossEncoder

# model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512) # 英文,模型较小
model = CrossEncoder('BAAI/bge-reranker-large', max_length=512) # 多语言,国产,模型较大

测试打分 

user_query = "how safe is llama 2"
# user_query = "llama 2安全性如何"
scores = model.predict([(user_query, doc)
                       for doc in search_results['documents'][0]])
# 按得分排序
sorted_list = sorted(
    zip(scores, search_results['documents'][0]), key=lambda x: x[0], reverse=True)
for score, doc in sorted_list:
    print(f"{score}\t{doc}\n")
1.3 混合检索(Hybrid Search)

在实际生产中,传统的关键字检索(稀疏表示)与向量检索(稠密表示)各有优劣。

举个具体例子,比如文档中包含很长的专有名词,关键字检索往往更精准而向量检索容易引入概念混淆。

# 背景说明:在医学中“小细胞肺癌”和“非小细胞肺癌”是两种不同的癌症

query = "非小细胞肺癌的患者"

documents = [
    "玛丽患有肺癌,癌细胞已转移",
    "刘某肺癌I期",
    "张某经诊断为非小细胞肺癌III期",
    "小细胞肺癌是肺癌的一种"
]

query_vec = get_embeddings([query])[0]
doc_vecs = get_embeddings(documents)

print("Cosine distance:")
for vec in doc_vecs:
    print(cos_sim(query_vec, vec))

所以,有时候我们需要结合不同的检索算法,来达到比单一检索算法更优的效果。这就是混合检索

混合检索的核心是,综合文档 𝑑 在不同检索算法下的排序名次(rank),为其生成最终排序。

一个最常用的算法叫 Reciprocal Rank Fusion(RRF)

𝑟𝑟𝑓(𝑑)=∑𝑎∈𝐴1𝑘+𝑟𝑎𝑛𝑘𝑎(𝑑)

其中 𝐴 表示所有使用的检索算法的集合,𝑟𝑎𝑛𝑘𝑎(𝑑) 表示使用算法 𝑎 检索时,文档 𝑑 的排序,𝑘 是个常数。

很多向量数据库都支持混合检索,比如 WeaviatePinecone 等。也可以根据上述原理自己实现。

手写混合检索示例:
  1. 基于关键字检索的排序
import time


class MyEsConnector:
    def __init__(self, es_client, index_name, keyword_fn):
        self.es_client = es_client
        self.index_name = index_name
        self.keyword_fn = keyword_fn

    def add_documents(self, documents):
        '''文档灌库'''
        if self.es_client.indices.exists(index=self.index_name):
            self.es_client.indices.delete(index=self.index_name)
        self.es_client.indices.create(index=self.index_name)
        actions = [
            {
                "_index": self.index_name,
                "_source": {
                    "keywords": self.keyword_fn(doc),
                    "text": doc,
                    "id": f"doc_{i}"
                }
            }
            for i, doc in enumerate(documents)
        ]
        helpers.bulk(self.es_client, actions)
        time.sleep(1)

    def search(self, query_string, top_n=3):
        '''检索'''
        search_query = {
            "match": {
                "keywords": self.keyword_fn(query_string)
            }
        }
        res = self.es_client.search(
            index=self.index_name, query=search_query, size=top_n)
        return {
            hit["_source"]["id"]: {
                "text": hit["_source"]["text"],
                "rank": i,
            }
            for i, hit in enumerate(res["hits"]["hits"])
        }

 

  1. 基于向量检索的排序
# 创建向量数据库连接器
vecdb_connector = MyVectorDBConnector("demo_vec_rrf", get_embeddings)

# 文档灌库
vecdb_connector.add_documents(documents)

# 向量检索
vector_search_results = {
    "doc_"+str(documents.index(doc)): {
        "text": doc,
        "rank": i
    }
    for i, doc in enumerate(
        vecdb_connector.search(query, 3)["documents"][0]
    )
}  # 把结果转成跟上面关键字检索结果一样的格式

print(json.dumps(vector_search_results, indent=4, ensure_ascii=False))
  1. 基于 RRF 的融合排序

 

def rrf(ranks, k=1):
    ret = {}
    # 遍历每次的排序结果
    for rank in ranks:
        # 遍历排序中每个元素
        for id, val in rank.items():
            if id not in ret:
                ret[id] = {"score": 0, "text": val["text"]}
            # 计算 RRF 得分
            ret[id]["score"] += 1.0/(k+val["rank"])
    # 按 RRF 得分排序,并返回
    return dict(sorted(ret.items(), key=lambda item: item[1]["score"], reverse=True))
import json

# 融合两次检索的排序结果
reranked = rrf([keyword_search_results, vector_search_results])

print(json.dumps(reranked, indent=4, ensure_ascii=False))
1.4 RAG-Fusion

RAG-Fusion 就是利用了 RRF 的原理来提升检索的准确性。

Image

原始项目(一段非常简短的演示代码):https://github.com/Raudaschl/rag-fusion

### RAG 架构中的文本分割概念 在RAG架构中,文本分割是指依据特定标准将文档分解为更小、可管理的部分。这些部分通常被称为“块”或“片段”,目的是为了提高检索效率并优化后续处理阶段的效果[^1]。 对于中文文本而言,有效的文本分割策略能够显著提升信息抽取的质量。具体来说,可以利用标题、段落边界以及标点符号作为自然分隔符来定义各个文本块的范围。这种基于结构特征的方法有助于保持语义连贯性和上下文关联性[^2]。 #### 文本分割的具体实现方式 一种常见的做法是采用正则表达式匹配或者专门设计的解析算法来进行初步划分;之后再通过一些启发式的规则进一步调整切分位置,确保每个片段既不过于冗长也不至于太短而失去意义。此外,在某些情况下还可以引入机器学习模型辅助判断最佳切割点,从而获得更加精准的结果。 ```python import re def split_text(text, max_length=500): """ 将输入文本按照一定长度限制进行合理拆分 参数: text (str): 待分割的大段文字 max_length (int): 单个片段的最大字符数,默认值为500 返回: list[str]: 经过分割后的子串列表 """ # 使用正则表达式识别可能的断句位置 pattern = r'(?<=[\.\?\!])|(?<=\n\n)|(?<=先生|女士)' sentences = [] current_sentence = "" for chunk in re.split(pattern, text): if len(current_sentence) + len(chunk.strip()) >= max_length or not chunk.strip(): if current_sentence: sentences.append(current_sentence.strip()) current_sentence = chunk.strip() else: current_sentence += " " + chunk.strip() if current_sentence.strip(): sentences.append(current_sentence.strip()) return sentences ``` 此函数展示了如何使用Python编写简单的文本分割工具,它可以根据预设条件自动完成大部分工作,并且易于扩展以适应不同应用场景的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅气的梧桐述

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值