Zero-Shot Learning with Semantic Output Codes [NIPS 2009]
zero-shot和one-shot:
在分类场景下(或序列标注或NLU),在已知的几个topic或domain内(domain A,B,C),已经训练出了性能较好的分类器。此时想解决针对新的domain D的分类问题,然而D domain的样本非常少(one-shot),或者没有(zero-shot)。此时如何根据ABC类别的样本,或MACHINE,生成D domain的machine,就是zero-shot model要解决的问题。
其实是transfer-learning的一种。
tansfer-learning核心思想:source-domain->pivot->general Feature Space->target-domain
典型应用场景:如图像检测,y的value太多,很难见到全部y和全部x。
成功案例:如语音识别,能识别OOV的词
核心问题:
omitted from the training set
核心思想:
define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of semantic properties of Y to extrapolate to n