[paper] Zero-Shot Learning with Semantic Output Codes [NIPS 2009]

本文介绍了Zero-Shot Learning的概念,它在已知领域训练高性能分类器后,尝试解决新领域的分类问题,即使新领域样本稀少或不存在。该方法基于迁移学习,通过构建语义输出码分类器利用知识库进行类别外推。核心思想是定义一种使用Y的语义属性知识库的分类器,以抽象出新类。
摘要由CSDN通过智能技术生成

Zero-Shot Learning with Semantic Output Codes [NIPS 2009]


zero-shot和one-shot:

在分类场景下(或序列标注或NLU),在已知的几个topic或domain内(domain A,B,C),已经训练出了性能较好的分类器。此时想解决针对新的domain D的分类问题,然而D domain的样本非常少(one-shot),或者没有(zero-shot)。此时如何根据ABC类别的样本,或MACHINE,生成D domain的machine,就是zero-shot model要解决的问题。

其实是transfer-learning的一种。

tansfer-learning核心思想:source-domain->pivot->general Feature Space->target-domain

典型应用场景:如图像检测,y的value太多,很难见到全部y和全部x。

成功案例:如语音识别,能识别OOV的词


核心问题:

omitted from the training set


核心思想:

define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of semantic properties of Y to extrapolate to n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值