微积分的历史

微积分起源于古希腊的穷竭法和中国古代的割圆术,经历17世纪的统一发展,通过积分与微分的互逆关系得以确立。然而,无穷小的问题困扰了数学家们,直到柯西和魏尔斯特拉斯用极限理论重新定义了微积分的基础,解决了无穷小的逻辑矛盾。微积分的基本定理——牛顿-莱布尼兹公式,使得积分与微分运算得以相互转化,极大地推动了数学和科学技术的进步。
摘要由CSDN通过智能技术生成

微分和积分本来是两个独立的部分。当牛顿、莱布尼兹发现了微分与积分的内在关系之后,意味着微积分学的诞生。

本文的章节为:
一、微分与积分独立的发展
二、微积分的诞生
三、微积分的基础-极限的发展
四、微积分的重建

微分与积分独立的发展

先来看积分独立的发展阶段

早在古希腊,阿基米德就用三角形来不断逼近抛物线,计算了抛物线的面积,古中国的刘微用正多边形去逼近圆,也就是用割圆术去计算圆周率。总之,这种用已知图形去不断逼近原图形来求面积的思想早就已经形成,这里称这种方法为穷竭法。不过,穷竭法有一个问题:逼近原图形时,不同的原图形所使用的已知图形不同,阿基米德使用三角形,而刘徽使用正多边形来逼近,这样就很麻烦。

到了17世纪,人们统一使用矩形来做逼近:不管是什么原图形,都是用无数个矩形来做逼近,且都沿着x轴来切割。这样,所有的图形面积都可以写为n个矩形面积的和,从而写成级数的形式,但是计算级数可不是简单的事情。n越大,矩形的数量越多,那么矩形面积之和就越接近原图形的面积。从直觉上,当n为无穷大时,也就是每个矩形的宽无限趋近于0时(即无穷小),矩形面积之和就是原图形的面积。也就是说曲线围成的面积是无数个宽度为无穷小量的矩形面积之和 。但仅靠直觉,这很不严谨。

关于求面积,从古代的阿基米德、刘徽到17世纪,这种使用已知图形去不断逼近原图形的思想并没有什么太大的改变,由于这种解法比较复杂,又很难拓展,所以大家的关注度并不高。从而,有关积分的发展就基本停滞。

再来看微分独立的发展阶段

在直线上,我们任意找两个点,用他们的纵坐标之差△y与横坐标之差△x的比值(△y/△x)来定义斜率,用斜率来表示直线的倾斜程度。直线在不同的地方,倾斜程度都是相同的,而曲线是不断变化的,所以就不能说一条曲线的倾斜程度,只能说曲线在某个点的倾斜程度。从而引入了切线的概念,用切线的斜率来代表曲线在这个点的倾斜程度。但是,某点的切线如何确定呢,传统上先做一条过该点的割线,然后另一点沿着曲线向该点靠近,在直观上,当两点重合之后,割线就变成了该点的切线。但是,当两点重合之后就是一个点了,而两点才确定一条直线。要是不重合就仍然是割线。所以,就有一个逻辑问题:什么时候从割线变成切线?解决这个问题的思路就是:既然两点重合不行,分的太开也不行,那就让这两点无限接近(就是让这两点的距离无限接近0,而又不等于0。因此,问题就又成了无穷小)。

利用无穷小定义了一点的切线,就可以使用切线的斜率来表示曲线在该点的倾斜度。因为切线是曲线上A、B两点相隔无穷小的直线,所以切线的斜率也可以写成△y/△x,不同的是△y和△x都无限趋近于0(也就是无穷小)。故,莱布尼兹就给△y和△x取了个新的名字:dy和dx,并把它们称为微分,dy/dx也就是切线斜率。

我们在曲线上一点做了切线,那么在平滑曲线的其他点也可以做切线,而每条切线都有自己的斜率,所以曲线上任何一点都有一个斜率值与它对应,显然这是一个函数,并称这个函数为导函数,简称导数,用f’(x)或者dy/dx表示。导数表示曲线上任意一点对应切线的斜率,也就是任意一点的倾斜程度,反应任意一点的变化率。于是,我们就可以使用导数来描述曲线的倾斜程度了。

导数是微分的核心内容。

但是,不足的是,导数也包含无穷小这个问题,它无限接近与0,却又不等于0,作为除数,分子、分母可以直接约掉,作为加数,又可以直接去掉。因此,就产生了一个很奇怪的逻辑:如果认为无穷小量为0,那么就可以直接去掉,但不可以约;如果认为无穷小量不是0,那就可以约,却又不可以直接去掉。而这里既可以约又可以去掉,所以这个无穷小到底是什么,总不能同时等于0却又不等于0吧。

微积分的诞生

牛顿、莱布尼兹划时代的发现了微分与积分的内在联系:微分和积分,这两个看似不搭边的东西,竟然是一对互逆运算。从此,微积分就诞生了。

如何理解互逆运算呢?我们从位移与速度的角度来看:对速度v进行积分,就是位移s;对位移s进行微分(求导)就是速度v。
在这里插入图片描述

那么,既然积分和微分是互逆运算,那么我们就可以相互转化,积分不能做的事情,交给微分来处理。原本积分由于运算的复杂性而停滞,在伟大的牛顿、莱布尼兹发现微积分的互逆运算后,使积分又活了过来,既然积分的路难走,那就走微分的路呀。

如何走呢?在微分中,我们知道对一个函数求导,可以得到这个函数的导数(导函数)。那么反过来,知道一个导函数,同样也可以求他的原函数(反求导过程)。 因为微分和积分是互逆运算,所以反向微分(反求导过程)也就是积分呀。所以与位移和速度的关系进行对比,有:对导函数进行积分得到原函数,对原函数进行微分(求导)得到导函数。
在这里插入图片描述
速度就相当于导函数,位移就相当于原函数,于是,原函数就有了求积分的效果。这让微积分发生了根本性的改变!

既然要用反向微分的方法求面积,那我们就去找被积函数的原函数。因为原函数具有积分的效果,而积分就是曲线围成的面积,所以原函数也就表示曲线围成的面积呀。当我们求某个区间的面积时,直接用这个代表面积的原函数在区间端点的值相减就可以。

于是,微积分基本定理(牛顿-莱布尼兹公式)就容易理解了:如果f(x)在区间内连续,且F(x)为f(x)的一个原函数,那么有
在这里插入图片描述
求原函数然后相减,比用无穷多个矩形面积去求和的方法简单的多,可操作性也大的多,容易计算,更具有一般性。因此微分和积分这两个独立的学问被牛顿、莱布尼兹统一成了微积分。

微积分基本定理的核心思想就是用求原函数的方式来解决求积分的问题,所以,求一个函数的原函数就成了问题的核心。那么,我们自然就要研究各种常见函数的求导和求原函数的方法,这也是教材注重的,和考试的重点。

微积分的基础–极限的发展

尽管,微积分的理论框架已经搭建起来了,但是其有关无穷小的问题仍旧没有彻底解决,而这个无穷小量dx又是微积分的基础。那么如何把微积分建立在坚实的基础上呢?

莱布尼兹定义的无穷小,使用”动态的“定义,即无限接近,想多接近就多接近,但就是无法到达。这种动态的定义其实有一个矛盾,因为实数是稠密的,任意两个实数之间都有无数个点,所以压根就不可能走完任意两个点之间所有的点,那么也就是在实数轴上根本就走不动,所以无限接近这种动态的思想行不通。尽管它很直观,易于理解。但严谨才是数学的本质。

后来,柯西放弃了这种动态的定义,转向静态的,完全可以测量的方法重新定义了极限:当一个变量无限的趋近于某个固定的值时,如果它同这个固定值之间的差可以随意的小,那么这个固定值就是极限。

差值可以随意的小和主动无限逼近完全不同,可以随意的小是你给定一个确定的值,我都可以让这个差值比给定的数小。

因此,柯西完美的避开了那个让人烦的无穷小量。在柯西这里,无穷小量就是个极限为0的量而已,只要你说出一个数,我都可以让我和0之间的差值比你给的数小。

后来,魏尔斯特拉斯完全用数学的语言改进了柯西的思想,得到了现在所使用的极限定义:当且仅当对于任意的ε,存在一个δ>0,使得只要0<|x-a|<δ,就有|f(x)-L|<ε,那么我们就说f(x)在a点的极限为L。记做:
在这里插入图片描述
这个定义真正做到了完全静态,他根本不关心你是如何逼近的,只要最后的差比给定的任意数小就行,我就承认你是我的极限。

微积分的重建

有了极限这一坚实的基础,微积分又迎来了新生。

先看积分的重建

之前认为曲线围成的面积是无数个宽度为无穷小量的矩形面积之和。现在,用极限代替这个无穷小量,我们就可以把曲线围成的面积看成是一个极限。这样,就形成了如今的积分:

在这里插入图片描述
也就是说,按照极限的ε-δ定义,这个积分的真正含义是:你任意给一个ε,我都能让矩形和(曲线围成的面积)与积分值的差比你给的ε更小。那么,我就认为积分值就是曲线围成的面积。

微分的重建:

之前,导数认为是两个无穷小量的比值,现在用极限来代替这个无穷小量。所以,切线就理解为割线的极限,那么切线的斜率就是割线斜率的极限。而割线的斜率就是用这两点的纵坐标之差f(x+Δx)-f(x)除以这两点的横坐标之差(x+Δx-x=Δx),而导数f’(x)是割线斜率的极限。那么,我们在割线斜率的前面加一个极限符号就可以表示导数f’(x)了:
在这里插入图片描述
这才是导数的真正定义,它是一个极限,而不再是两个无穷小量dy与dx的商dy/dx。也就是说,按照极限的ε-δ定义,这个导数f’(x)的真正含义是:你任意给一个ε,我都能让割线的斜率与导数值的差比你给的ε更小。

莱布尼茨当年认为导数是两个无穷小量dy和dx的商,所以他用dy/dx来表示导数。虽然现在导数不再是这个意思,但是莱布尼茨当年精心发明的这一套符号确实是非常好用,于是我们就继续沿用了下来。今天仍然用dy/dx表示导数,但是大家一定要注意,dy/dx在现代语境里是一个极限,不再是两个无穷小量的商。

那么,以前,dx和dy是被当作无穷小量的微分,现在的含义又是什么呢?
如图:
在这里插入图片描述
由图知:dx表示在x轴的变化量,dy就刚好表示蓝色的切线在y轴的变化量。

也就是说,当自变量变化了Δx的时候,Δy表示实际的曲线的变化量,而微分dy则表示这条切线上的变化量,这就是新的语境下函数微分dy的含义。而自变量的微分dx,大家可以看到,就跟x轴的变化量Δx是一回事。由于切线是一条直线,而直线的斜率是一定的。所以,如果我们假设这条切线的斜率为A,那么dy和Δx之间就存在这样一种线性关系:dy=A·Δx。

微分的严格定义是这样的:对于Δy是否存在着一个关于Δx为线性的无穷小A·Δx(A为常数),使它与Δy的差是较Δx更高阶的无穷小。也就是说,下面这个式子是否成立:
在这里插入图片描述

o(Δx)就表示Δx的高阶无穷小。如果这个式子成立,我们就说函数y=f(x)在这点是可微的,dy=A·Δx就是函数的微分。因为这是一个线性函数,所以我们说微分dy是Δy的线性主部。

结语:

古希腊人和古代中国人都知道用已知的多边形去逼近复杂曲线图形,阿基米德用穷竭法算出了一些简单曲线围成的面积,刘微用正多边形去逼近圆,也就是用割圆术去计算圆周率。牛顿和莱布尼茨发现了“微分和积分是一对互逆运算”这个惊天大秘密,正式宣告了微积分的诞生。柯西和魏尔斯特拉斯用ε-δ语言重新定义了极限,把风雨飘摇中的微积分重新建立在坚实的极限理论基础之上,彻底解决了幽灵般的无穷小量的问题,解决了第二次数学危机,也在数学领域解决了芝诺悖论。勒贝格基于集合论,对积分理论进行了一次革命,建立了定义范围更广的勒贝格积分,并且进一步把这场革命推进到了实分析。

本文参考了长尾科技的文章,并进一步总结得到的,这是一篇很好的微积分科普文章,原文链接如下:
链接:https://www.zhihu.com/question/336322284/answer/918067537
作者:长尾科技

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值