通过视频监视进行基于计算机视觉的事故检测已经成为一项有益而艰巨的任务。
介绍
如今,车辆交通已成为人们生活的刚需部分,它每天都会影响许多人类活动和服务。因此,有效的道路交通组织和管理对于平稳的交通至关重要,特别是在人们习惯通勤的城市地区。
每年,人员伤亡和财产损失与车辆碰撞和车辆生产的数量成比例飙升,尽管采取了多项措施,以高涨道路监控技术,如摄像机在道路交叉口和雷达通常放置在公路上,捕捉超速汽车,但依然有许多人的失去生命,由于缺乏及时的意外报告 这导致提供给受害者延迟医疗援助。当前的交通管理技术严重依赖于人类对所拍摄镜头的感知。从操作人员的角度来看,这需要花费大量的精力,并且不支持对自发事件的任何实时反馈。
据统计,每年有近125万人在道路交通事故中丧生,另有205,000万人受伤或伤残。道路交通撞车事故是造成人员伤亡的第9大原因,占全世界所有人员伤亡的2.2%,预计到2030年,它们将是造成人员伤亡的第五大原因。
近年来,车辆事故检测已成为利用计算机视觉的普遍领域。
为了克服这种繁重的任务,及时提供急救服务,而无需人工来监视此类事件。因此,本文提出了一种实用的解决方案,通过提出一种可以自发检测车辆碰撞的解决方案来解决上述问题,这对于当地医护人员和交通部门及时缓解这种状况至关重要。
本文提出了一种新型的道路交通事故检测框架。所提出的框架利用Mask R-CNN进行精确的目标检测,然后是基于有效质心的监控镜头目标跟踪算法。该概率根据与其他车辆重叠后车辆中的速度和轨迹异常确定事故发生的时间。所提出的框架提供了一种鲁棒的方法,可以在一般道路交通监控录像上实现高检测率和低虚警率。使用提议的数据集,在各种条件下(例如,日光充足,能见度低,下雨,冰雹和下雪)对该框架进行了评估。该框架被认为是有效的,并为实时开发通用车辆事故检测算法铺平了道路。
相关工作
在过去的几十年中,图像处理和计算机视觉领域的研究人员一直对汽车交通事故的检测非常感兴趣[。而且已经提出并开发了许多方法来解决该问题。
解决方案之一,由Singh 等人提出:
要检测车辆事故,请使用监控摄像机的信号源,方法是生成时空视频量(STVV),然后在去噪自动编码器上提取深层表示,以便生成异常分数,同时检测移动物体,跟踪物体,然后查找最终确定发生事故的几率。这种方法可以有效地确定在交通流量正常且照明条件良好的交叉路口发生的车祸。但是,在低能见度条件下确定事故,车祸发生严重闭塞以及交通方式变化较大时,它在准确预测中存在主要缺陷,此外,它的表现不理想,因为它仅依赖于交通流模式中的轨迹交叉点和异常,这表明它在不稳定的交通模式和非线性轨迹中表现不佳。
同样,Hui提出了一种使用高斯混合模型(GMM)来检测车辆的方法,然后使用均值偏移算法对检测到的车辆进行跟踪。尽管此算法对于处理事故期间的遮挡效果非常合适,但由于交通模式变化不定和恶劣的天气情况,该方法依赖于有限的参数,因此该方法仍存在主要