实数的完备性

实数的完备性

实数的完备性公理

∀ X , Y ⊂ R , X , Y ≠ ∅ , \forall X,Y\sub \R,X,Y\ne\varnothing, X,YR,X,Y=,如果有 ∀ x ∈ X , y ∈ Y : x ≤ y \forall x\in X,y\in Y:x\le y xX,yY:xy,那么 ∃ c ∈ R ∀ x ∈ X ∀ y ∈ Y : x ≤ c ≤ y \exist c\in\R\forall x\in X\forall y\in Y:x\le c\le y cRxXyY:xcy.

此时,称c是X,Y的一个界限.

上确界引理

实数的任意非空有上界子集有上确界.

证明:

任取 X ⊂ R X\sub\R XR,为实数集的非空有上界子集.

Y = { y ∈ R ∣ ∀ x ∈ X ( y ≥ x ) } Y=\{y\in\R|\forall x\in X(y\ge x)\} Y={yRxX(yx)},即Y是X的上界的集合.

由题意, Y ≠ ∅ Y\ne\varnothing Y=.

由完备性公理, ∃ c ∈ R : ∀ x ∈ X ∀ y ∈ Y : x ≤ c ≤ y \exist c\in\R:\forall x\in X\forall y\in Y:x\le c\le y cR:xXyY:xcy.

即,c既是X的上界,又是Y的下界.

显然有 c ∈ Y c\in Y cY.

c是X的上界中的最小元,因此它是X的上确界.

而c本身又是Y中的最小元,即Y的下确界.

闭区间套引理

集列套

对于集合构成的无穷序列 { X n } \{X_n\} {Xn},如果满足

∀ n ∈ N : X n + 1 ⊂ X n \forall n\in\N:X_{n+1}\sub X_n nN:Xn+1Xn

则称 { X n } \{X_n\} {Xn}为一个集列套.

闭区间套引理

如果集列套 { I n } \{I_n\} {In}中的元素均为闭区间,则有 ∃ c ∈ R ∀ n ∈ N : c ∈ I n \exist c\in\R\forall n\in\N:c\in I_n cRnN:cIn.

以及,如果 ∀ ε > 0 ∃ n ∈ N : ∣ I n ∣ < ε \forall\varepsilon>0\exist n\in\N:|I_n|<\varepsilon ε>0nN:In<ε,那么上述 c c c唯一.

证明:

I n = [ a n , b n ] . I_n=[a_n,b_n]. In=[an,bn].

∀ m , n ∈ N : a m ≤ b n \forall m,n\in\N:a_m\le b_n m,nN:ambn

否则, a n ≤ b n < a m ≤ b m a_n \le b_n< a_m\le b_m anbn<ambm

此时, I n I_n In I m I_m Im显然不交,这与它们本应有的子集关系矛盾.

A = { a m , m ∈ N } , B = { b n , n ∈ N } A=\{a_m,m\in\N\},B=\{b_n,n\in\N\} A={am,mN},B={bn,nN}.

显然可以由A,B得到一个界限c,位于所有的闭区间之中.

∀ ε > 0 ∃ n ∈ N : ∣ I n ∣ < ε \forall\varepsilon>0\exist n\in\N:|I_n|<\varepsilon ε>0nN:In<ε.

如果有 c 1 ≠ c 2 c_1\ne c_2 c1=c2均为A,B的界限.

ε = ∣ c 1 − c 2 ∣ , ∃ I n : ∣ I n ∣ < ε \varepsilon=|c_1-c_2|,\exist I_n:|I_n|<\varepsilon ε=c1c2,In:In<ε,矛盾.

因此此时,界限唯一.

有限覆盖原理

覆盖

集合组成的集合,称为是集族.

集族S的所有元素的并集,记作 ∪ X ∈ S X \cup_{X\in S}X XSX.

如果集合Y是这种并集的子集,即称S覆盖Y.

有限覆盖引理

如果一个开区间集族覆盖了一个闭区间,那么存在着一个有限的子族同样覆盖该闭区间.

证明:

令集族S覆盖闭区间 I 1 I_1 I1,假设结论不成立.

将闭区间 I 1 I_1 I1划分为2个闭区间,则其中必有至少一个不可被S有限覆盖,令其为 I 2 I_2 I2.

不断重复这个过程,即可得到一个闭区间套 { I n } \{I_n\} {In}.

且该闭区间套中,多小的闭区间长度都是有的.

则存在唯一的界限c,位于所有的闭区间套之中.

任取S中的某个包含了c的开区间U.

显然有 ∃ n ∈ N : I n ∈ U \exist n\in\N:I_n\in U nN:InU.

这与结论矛盾.

极限点引理

极限点

X ⊂ R X\sub\R XR,如果点 p ∈ R p\in\R pR的任何邻域都包含了X的一个无穷子集,那么称p是X的极限点.

等价命题为,p的任意去心邻域不与X不交.

极限点引理

每个无穷有界集至少有一个极限点.

证明:

令X为 R \R R的无穷有界子集.

由于X有界,令 X ⊂ [ a , b ] = I X\sub [a,b]=I X[a,b]=I.

反证,假设I中没有X的极限点.

则任取I中每个点的某个邻域,可以得到一个覆盖了I的集族.

这些邻域要么与X不交,要么只包含了有限个X的点.

显然,应有一个X的有限覆盖.

但这个有限覆盖中,每个元素均包含X的有限个点,而X是个无穷集合,矛盾.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值