论文笔记-Dual Refinement Underwater Object Detection Network

本文探讨了水下目标检测的挑战,如模糊、纹理失真和光照不均,提出了一种名为FERNet的新型检测框架。该框架采用复合连接主干和感受野增强模块,以增强特征表示并处理尺度变化问题。实验结果显示,这种方法在水下目标检测中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hello,今天是论文阅读计划的第17天~

今天来学习的一篇论文也是关于目标检测的~不过变成水下的了

Code: https://github.com/Peterchen111/FERNet

一、背景

目前,水下机器人应用于许多领域,如水下目标捕捉、水下调查和水下搜索。水下目标检测作为水下机器人的关键技术,仍然面临着严峻的挑战(如模糊、纹理失真、光照不平衡等)。当我们直接在水下场景中使用通用检测算法时,它们不能很好地工作。为了解决这些问题,我们提出了一种具有特征增强和锚细化的水下检测框架。它有一个复合连接主干来增强特征表示,并引入了一个感受野增强模块来利用多尺度内容特征。

二、相关工作

在研究过程中,我们发现许多优秀的通用目标检测框架直接应用于水下任务时,很难保持高精度和鲁棒性。例如,Faster-RCNN [26]受到CNN尺度不变性的影响。水下尺度变化问题很难处理。由于Regional Proposal Network (RPN)的存在,它很难满足实时性的要求。SSD [18]可以高速检测,但是对于水下小而模糊的物体会有漏检的问题。尽管一般的目标检测器存在一些问题,但它们对水下场景的检测研究仍有启发。大多数方法采用自上而下的金字塔表示,将高级语义信息注入高分辨率的特征地图以解决比例问题。为了处理遮挡问题,称为Mix up[35]的数据增加方法变得流行。该方法可以在训练阶段模拟遮挡样本,从而增强

### 关于点监督伪装目标检测的研究 #### 论文背景与动机 伪装目标检测(Camouflaged Object Detection, COD)旨在识别那些与其周围环境高度融合的目标对象。这类任务具有挑战性,因为目标通常难以通过传统的方法区分出来。在弱监督学习领域,利用较少标注的数据进行训练成为一种趋势。其中,基于点监督的学习方式因其高效性和简单性受到关注。 一篇重要的研究工作来自ECCV会议的论文《Point-Supervised Camouflaged Object Detection》[^1]。该论文探讨了一种新颖的方式——仅依赖少量点级别的标注完成伪装目标的检测任务。这种方法不仅减少了人工标注的成本,还能够有效捕捉复杂场景下的目标特征。 --- #### 方法概述 在这篇论文中,作者提出了一个基于点监督的框架用于解决伪装目标检测问题。具体而言: - **输入形式**:模型只需要知道某些像素位置是否属于前景目标即可,而不必提供完整的边界框或者密集掩码。 - **核心思想**:通过设计特定损失函数以及引入注意力机制,使得网络能够在有限的信息下逐步推导出整个目标区域的位置和形状。 为了实现上述目标,文中采用了以下几个关键技术模块: 1. **Scribble Annotations Integration** 利用了简单的笔画注解技术作为辅助工具来增强初始预测质量,并进一步指导后续优化过程 [^2]。 2. **Attention Mechanism Enhancement** 增加了自注意层以加强局部细节感知能力的同时兼顾全局上下文关系 [^3]。 3. **End-to-end Training Strategy** 提出了端到端可微分架构以便更有效地联合调整各个子组件参数配置 [^4]。 以下是简化版算法流程示意代码片段: ```python def point_supervised_cod(image, points): """ Point-supervised camouflaged object detection pipeline. Args: image (Tensor): Input RGB image tensor. points (List[Tuple[int]]): List of annotated foreground/background points as tuples (x,y). Returns: Tensor: Predicted segmentation mask. """ # Step 1: Extract features using backbone network feature_maps = backbone_network(image) # Step 2: Apply attention mechanism to enhance local-global interactions attended_features = self_attention(feature_maps) # Step 3: Generate initial prediction based on scribble annotations init_prediction = generate_initial_mask(attended_features, points) # Step 4: Refine predictions iteratively through feedback loops refined_predictions = iterative_refinement(init_prediction) return refined_predictions[-1] ``` --- #### 实验结果分析 实验表明,相比传统的全监督方法或者其他类型的弱监督策略,本研究所提出的点监督方案具备以下优势: - 显著降低了数据准备的工作量; - 达到了接近甚至超越完全标注条件下系统的性能水平 [^5]; 这些结论得到了多个公开测试集上的定量评估支持,同时也验证了所提方法对于不同类型伪装现象的良好泛化能力。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值