论文笔记-Dual Refinement Underwater Object Detection Network

本文探讨了水下目标检测的挑战,如模糊、纹理失真和光照不均,提出了一种名为FERNet的新型检测框架。该框架采用复合连接主干和感受野增强模块,以增强特征表示并处理尺度变化问题。实验结果显示,这种方法在水下目标检测中表现出色。
摘要由CSDN通过智能技术生成

Hello,今天是论文阅读计划的第17天~

今天来学习的一篇论文也是关于目标检测的~不过变成水下的了

Code: https://github.com/Peterchen111/FERNet

一、背景

目前,水下机器人应用于许多领域,如水下目标捕捉、水下调查和水下搜索。水下目标检测作为水下机器人的关键技术,仍然面临着严峻的挑战(如模糊、纹理失真、光照不平衡等)。当我们直接在水下场景中使用通用检测算法时,它们不能很好地工作。为了解决这些问题,我们提出了一种具有特征增强和锚细化的水下检测框架。它有一个复合连接主干来增强特征表示,并引入了一个感受野增强模块来利用多尺度内容特征。

二、相关工作

在研究过程中,我们发现许多优秀的通用目标检测框架直接应用于水下任务时,很难保持高精度和鲁棒性。例如,Faster-RCNN [26]受到CNN尺度不变性的影响。水下尺度变化问题很难处理。由于Regional Proposal Network (RPN)的存在,它很难满足实时性的要求。SSD [18]可以高速检测,但是对于水下小而模糊的物体会有漏检的问题。尽管一般的目标检测器存在一些问题,但它们对水下场景的检测研究仍有启发。大多数方法采用自上而下的金字塔表示,将高级语义信息注入高分辨率的特征地图以解决比例问题。为了处理遮挡问题,称为Mix up[35]的数据增加方法变得流行。该方法可以在训练阶段模拟遮挡样本,从而增强

"Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition" 是一篇关于基于骨架的动作识别的论文。如果要提出改进方法,可以考虑以下几个方向: 1. 模型结构改进:可以尝试改进论文中提出的Channel-wise Topology Refinement Graph Convolution模块。例如,可以探索更复杂的图卷积模型结构,引入更多的注意力机制或者跨层连接,以提高模型对骨架数据的建模能力。 2. 数据增强和预处理:骨架数据可能存在缺失或者噪声,可以尝试使用数据增强技术(如旋转、平移、缩放)来增加数据的多样性和鲁棒性,或者使用预处理技术(如滤波、插值)来处理数据中的噪声和缺失。 3. 图结构优化:可以尝试优化骨架数据的图结构表示。例如,可以使用图剪枝算法来去除冗余的边或节点,或者使用图生成算法来自动构建更准确的图结构。 4. 跨模态信息融合:可以考虑将骨架数据与其他传感器数据(如深度图像或RGB图像)进行融合。通过融合不同模态的信息,可以提高对动作的理解和识别能力。 5. 模型训练优化:可以探索更有效的模型训练方法,例如引入更合适的损失函数或者优化算法。此外,可以尝试使用迁移学习或领域自适应的方法,将从其他相关任务或领域中学到的知识迁移到骨架动作识别任务中。 以上是一些可能的改进方向,具体的改进方法需要根据具体问题和实验结果来确定。同时,也可以参考相关领域的最新研究和技术进展,以获取更多的启发和创新点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值