Hello,今天是论文阅读计划的第17天~
今天来学习的一篇论文也是关于目标检测的~不过变成水下的了
Code: https://github.com/Peterchen111/FERNet
一、背景
目前,水下机器人应用于许多领域,如水下目标捕捉、水下调查和水下搜索。水下目标检测作为水下机器人的关键技术,仍然面临着严峻的挑战(如模糊、纹理失真、光照不平衡等)。当我们直接在水下场景中使用通用检测算法时,它们不能很好地工作。为了解决这些问题,我们提出了一种具有特征增强和锚细化的水下检测框架。它有一个复合连接主干来增强特征表示,并引入了一个感受野增强模块来利用多尺度内容特征。
二、相关工作
在研究过程中,我们发现许多优秀的通用目标检测框架直接应用于水下任务时,很难保持高精度和鲁棒性。例如,Faster-RCNN [26]受到CNN尺度不变性的影响。水下尺度变化问题很难处理。由于Regional Proposal Network (RPN)的存在,它很难满足实时性的要求。SSD [18]可以高速检测,但是对于水下小而模糊的物体会有漏检的问题。尽管一般的目标检测器存在一些问题,但它们对水下场景的检测研究仍有启发。大多数方法采用自上而下的金字塔表示,将高级语义信息注入高分辨率的特征地图以解决比例问题。为了处理遮挡问题,称为Mix up[35]的数据增加方法变得流行。该方法可以在训练阶段模拟遮挡样本,从而增强