摘要
预测玩家何时会离开游戏为延长玩家生命周期和增加收入贡献创造了独特的机会。玩家可以被激励留下来,战略性地与公司组合中的其他游戏交叉链接,或者作为最后的手段,通过游戏内广告传递给其他公司。本文重点预测休闲社交游戏中高价值玩家的流失,并尝试评估可以从预测流失模型中获得的业务影响。我们比较了四种常见分类算法在两个拥有数百万玩家的休闲社交游戏中的预测性能。此外,我们实现了一个隐马尔可夫模型,以明确处理时间动态。我们发现神经网络在曲线下面积(AUC)方面实现了最佳预测性能。此外,为了评估流失预测的业务价值,我们在其中一款游戏上设计并实施了A/B测试,使用免费游戏内货币作为激励来留住玩家。测试结果表明,在预测的流失事件发生前不久联系玩家显著提高了与玩家沟通的有效性。结果还显示,发放免费游戏内货币对玩家的流失率或货币化没有显著影响。这表明,只有通过在流失事件发生前显著改变玩家的游戏体验才能留住玩家,并且交叉链接可能是应对流失玩家的更有效措施。
I. 引言
社交游戏是一种通过社交网络促进玩家互动的在线游戏,通常具有多人和异步游戏机制。社交游戏传统上以浏览器游戏的形式实现,但最近在移动设备上有了显著增长。过去几年中,社交游戏行业经历了快速增长,2012年估计收入为54亿欧元,预计2016年收入为107亿欧元。到2016年,社交游戏预计将占据视频游戏市场的近50% [1]。相比传统核心游戏,休闲游戏的特点是较短的游戏时长、更简单的规则和较低的投入要求。
大多数社交休闲游戏采用“免费增值”商业模式。免费增值(或免费游戏)意味着游戏免费提供给玩家,玩家可以通过应用内购买升级和特殊物品、解锁额外功能或加快进度。免费进入游戏极大地促进了玩家获取,但只有少数玩家会在应用内购买上花费真实货币——对于大多数社交休闲游戏来说,这一比例远低于10%。免费增值模式与客户之间建立了一种非合同关系,玩家离开游戏非常容易。社交游戏开发者的主要目标之一是延长玩家在游戏中的生命周期,以增加玩家基础和货币化潜力。预测用户何时离开游戏的能力为调整游戏体验以延长用户在游戏中的生命周期或在另一款游戏中激发新的生命周期提供了机会。为此,玩家可以被激励继续玩游戏,与公司组合中的其他游戏交叉链接,甚至交叉销售给其他公司。本文设计、实现并评估了基于两个Wooga大型社交游戏中玩家游戏活动数据的高价值玩家流失预测模型,并在其中一款游戏中测试了激励作为应对高价值玩家流失的方法。
选择的两款实时游戏是《Diamond Dash iOS》和《Monster World Flash》。图1和图2展示了这两款游戏的截图。《Diamond Dash》是一款类似于《俄罗斯方块》或《宝石迷阵》的移动设备方块拼图游戏。玩家必须在指定时间内尽快清除相同颜色的钻石以打破高分记录。清除的钻石将从顶部补充。游戏中还有多种能加快清除速度的能量提升或助推器,使玩家可以获得更高的分数并享受更刺激的游戏体验。《Monster World》是一款Facebook上的农场游戏,模拟经营一个高度个性化的花园。玩家种植和收获作物以获得硬币和其他游戏内货币。随着玩家通过各种等级,他们有机会扩展和美化他们的花园,并解锁新的游戏功能。与《Diamond Dash》不同,《Monster World》由玩家需要完成的任务驱动,需要玩家更频繁的互动和参与。


在本文中,我们定义了研究中两款游戏的高价值玩家细分和流失事件。此外,我们将流失预测表述为一个二分类问题。然后我们比较了四种不同分类算法的预测性能,并尝试使用隐马尔可夫模型(HMM)探索时间序列数据的时间动态。为了评估流失预测模型的业务影响,我们设计并在两款实时游戏之一上实施了A/B评估。
II. 文献综述
在各个领域中,已经进行了大量的研究工作 [2, 3, 4, 5, 6] 来研究客户流失并探索不同的建模技术以提高预测性能。
许多机器学习算法,如决策树、逻辑回归和神经网络,已被应用于流失预测问题。[2] 提出了一种基于神经网络的方法来预测蜂窝网络服务中的客户流失,并声称在探索不同神经网络拓扑时,中等规模的神经网络在客户流失预测中表现最佳。[3] 比较了支持向量机、逻辑回归和随机森林在报纸订阅数据集上的表现,报告称随机森林的预测能力在所研究的数据集中优于其他算法。类似的算法比较研究在一家付费电视公司中进行,包括从马尔可夫链模型中获得的客户流失概率估计作为流失预测模型的额外预测变量,并报告了改进的预测性能 [4]。[5] 声称神经网络在预测性能上优于其他流失预测模型。类似的结果可以在 [6] 和 [7] 中找到。
最近的研究 [8, 9] 也尝试通过社交网络挖掘或用社交网络统计数据扩展传统的机器学习技术来进行流失预测。社交网络分析也被用于预测移动网络中的客户流失 [8]。其基本思想是,如果客户在社交图中的邻居已经流失,那么该客户流失的概率会增加。[9] 构建了一个混合预测模型,将传统的表格流失模型与社交网络特征相结合,并报告称传统的表格流失模型仍然表现最佳。
据我们所知,只有一项其他研究 [13] 调查了免费游戏中的流失预测。然而,在进行这项研究时,该研究尚未发表。两项相关的研究工作 [10, 11] 关注于大型多人在线角色扮演游戏中的流失预测。[10] 提出了一种基于社会影响的方法,该方法应用了修改后的扩散模型与不同的传统分类器。玩家之间的社交关系通过玩家共同完成的任务数量来表征。[11] 提出了参与度、热情和持久性这三个语义维度,以构建用于流失预测建模的派生特征,并基于标记时间序列簇的加权距离提出了一种混合分类方法。[12] 采用了不同的方法,应用了生命周期分析技术在五款第一人称射击游戏的数据上。[12] 得出结论,普通玩家对游戏的兴趣随着一个非齐次泊松过程而变化。因此,玩家初始游戏行为的数据可以用来预测他们何时停止游戏。
我们的主要贡献是:据我们所知,与 [13] 一起,我们是第一个彻底研究免费休闲社交游戏中流失预测可行性的人。其次,我们是第一个评估高价值玩家流失预测对大型休闲社交游戏的业务影响——对玩家沟通、流失率和收入的影响。由此,我们发现了一些从纯数据分析角度无法发现的业务问题。第三,我们探索了在流失预测的传统分类模型中添加隐马尔可夫模型(HMM)特征的价值。
III. 问题定义
A. 定义高价值玩家
“高价值玩家”这个术语相当模糊。为了更精确地定义高价值玩家,我们研究了《Diamond Dash》中前百分比付费玩家对总收入的贡献,如图3所示。前7%的付费玩家贡献了大约50%的总收入。最低收入门槛(玩家要进入前百分比所需的最低收入)在前10%的付费玩家以下开始趋于平缓。进一步扩展百分比时,玩家变得越来越同质化。前10%似乎涵盖了所有具有异常高价值的玩家,这导致我们采用以下定义:
定义1:在第 t=0 天(观察时间)游戏中的高价值玩家是指在第 t = -90 天到第 t = -1 天之间按每个玩家产生的收入降序排列的所有付费玩家中排名前10%的玩家。

B. 定义活跃度
由于我们希望在实际流失事件发生之前接触到玩家,预测应针对活跃的高价值玩家。我们定义活跃的高价值玩家如下:
定义2:在第 t=0 天的活跃高价值玩家是指在第 t = -14 天到第 t = -1 天之间至少玩过一次游戏的高价值玩家。
C. 定义流失
“玩家流失”定义为永久离开游戏的玩家。这一决定可能是有意识或无意识的,由外部或内部原因驱动。在实践中,我们需要一个不活跃天数的阈值,以明确定义玩家的流失。我们考虑了《Diamond Dash》中高价值玩家在登录之间的不活跃天数分布。例如,如果一个高价值玩家在第 t = 1 天和第 t = 3 天玩了游戏,然后在第 t = 7 天再次玩游戏,这就给出了两个不活跃天数的样本:一个是 3 - 1 - 1 = 1 天,另一个是 7 - 3 - 1 = 3 天。图4显示了不活跃天数的分布直方图和累积分布曲线。数据显示,少于2%的高价值玩家在超过14天的时间内未登录游戏。因此,14天的不活跃是流失的良好指标。根据这一定义,98%的被定义为流失的玩家确实流失了。
定义3:如果一个活跃的高价值玩家在第 t=0 天开始在第 t=0 天到第 t=6 天之间的任何一天连续14天不活跃,则认为该玩家在第 t=0 天流失。

D. 问题陈述
我们将流失预测问题建模为一个二分类任务,其目标是为每个玩家分配一个流失或不流失的标签。我们在之前观察到的玩家行为的标记数据上训练各种分类器,预测玩家在该天之后的一周内是否会流失。我们使用AUC(接收者操作特征曲线下的面积)进行性能比较,因为它允许我们在所有可能的分类阈值下比较模型。ROC曲线通常在图表中显示,横轴为假阳性率(FPR),纵轴为真阳性率(TPR)。分类器性能可以通过不同的TPR和FPR组合以及不同的阈值选择进行比较。由于AUC是ROC曲线下的面积,当AUC为1时,分类器表现完美,ROC曲线沿图表的左边界和上边界运行。无论阈值如何,分类的TPR为1,FPR为0。当ROC曲线从左下角到右上角对角线时,AUC为0.5,反映了随机分类的情况。总结来说,我们的问题是找到最正确地为玩家分配流失标签的分类器,在所有可能的分类阈值下最大化AUC。
IV. 建模
A. 数据集
对于《Diamond Dash》和《Monster World》,我们提取了高价值玩家在2013年7月1日和8月1日这两个观察日的相关历史跟踪数据。然后,我们构建了两个标记数据集来建立流失预测模型。表1显示了原始数据集的摘要。数据主要有三类:第一类是游戏内活动跟踪数据,例如每天登录的时间序列或准确度时间序列;第二类是与收入相关的跟踪数据,例如玩家产生收入的时间序列;第三类是玩家档案数据,例如玩家玩游戏的时间长度和玩家来自哪个国家。我们通过应用Box-Cox变换处理数据,以减轻数据集的高度正偏。由于我们使用的算法通常在标准化数据集上表现更好,我们在数据准备阶段进一步对数据进行了中心化和缩放处理。

B. 特征选择
准备好的数据集包括数百个属性,并不是所有属性都对预测有用。为了确定用于预测的属性集,我们进行了系列特征选择程序。在特征选择过程中,我们使用了10折交叉验证的逻辑回归来估计不同特征集的AUC表现。我们实验了时间序列的长度,消除了与其他时间序列高度相关的时间序列,并应用了前向特征选择。表2总结了最终模型的特征集。经验实验表明,仅使用流失事件前14天的历史数据在AUC方面能获得最佳预测性能。

C. 离线评估
我们比较了神经网络(NN)、逻辑回归(Logistic)、决策树(DT)和支持向量机(SVM)的最佳预测性能。对于SVM,我们使用了径向基函数内核,并通过10折交叉验证应用参数网格搜索来调整超参数。我们实验了100种C(范围从0到5)和gamma(范围从0.2到5)的组合,步长为二次方。神经网络采用了简单的单隐藏层网络拓扑。隐藏节点数设为属性数和类别数之和除以二再加一。对于神经网络,我们也使用了10折交叉验证的参数网格搜索,尝试了学习率和动量的100种组合(范围从0.5到1.0)。
表3报告了不同算法在两个数据集上的平均AUC表现。图5和图6显示了上述四种算法的ROC曲线。结果在两个数据集上是一致的。神经网络和逻辑回归的表现相同,但如果纯粹基于AUC比较,神经网络略胜一筹。SVM和决策树的表现不太令人满意。SVM在低FPR(假阳性率)时表现更好,而决策树在FPR高于25%时表现更好。对于我们来说,低FPR更重要,因为我们认为干扰非流失玩家比忽视一些流失玩家更有害。因此,SVM比决策树更受青睐。在AUC方面,SVM也优于决策树。



D. 预测性能比较
图7显示了神经网络在《Diamond Dash》和《Monster World》数据上的ROC曲线比较。相同的预测建模技术在《Monster World》上表现明显优于《Diamond Dash》。具体来说,如果我们将FPR(即我们在预测的流失列表中包含的实际非流失用户的百分比)固定在5%,我们在《Monster World》上可以达到超过70%的TPR(真正率)。因此,我们可以覆盖到超过70%的真正流失用户,而在《Diamond Dash》上,在相同的FPR下,我们只能覆盖到35%的真正流失用户。

这种差异的直观解释是游戏的性质不同。尽管《Monster World》是一款休闲游戏,但它需要玩家更频繁的互动,并且更具吸引力。它在核心的种植机制之外还有许多附加功能,包括制作和销售产品、抽奖、水下花园以及像访问朋友的花园这样的深度社交功能。而《Diamond Dash》则完全专注于相同核心机制的限时回合。它不需要玩家投入大量精力,允许更随意的互动。《Diamond Dash》中的每用户每天登录次数显著低于《Monster World》,同一玩家的会话间隔可能会持续几天。因此,《Diamond Dash》中游戏内活动的行为模式不如《Monster World》明显,显得更随机,包含的关于即将发生流失事件的结构化信息更少。
E. 结合神经网络和HMM
尽管前面讨论的建模技术已经提供了相当不错的预测性能,但所有这些技术的一个共同问题是它们没有明确考虑时间序列属性的时间动态。如果我们改变时间序列中数据点的顺序,结果预测不会受到影响,因为这些算

最低0.47元/天 解锁文章
996

被折叠的 条评论
为什么被折叠?



