常用数据挖掘算法举例(上)

本文介绍了数据挖掘中常见的算法,包括朴素贝叶斯、决策树、K最近邻分类、神经网络和支持向量机。朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设;决策树通过属性测试构建树形结构进行分类;KNN利用K个最近邻的类别决定待分类样本;神经网络模仿人脑结构处理信息;支持向量机通过结构风险最小化原理实现高效分类。
摘要由CSDN通过智能技术生成

朴素贝叶斯

 

朴素贝叶斯分类法是统计学分类方法,在特征条件独立的前提下,基于贝叶斯定理计算的隶属关系概率进行分类。

朴素贝叶斯分类有着坚实的数学基础和稳定的分类效率,同时,分类模型需要估计的参数很少,对缺失数据不太敏感,算法也比较简单。

从理论上讲,朴素贝叶斯分类模型与其他分类方法相比的误差率最小,但是实际上并非总是如此,这是因为朴素贝叶斯分类模型假设各属性之间相互独立,然而这个假设在实际应用中往往是不成立的,因此,这在一定程度上影响了模型的正确分类。

 

决策树

 

决策树是一种类似于流程图的树结构。其中,每个内部节点代表在一个属性上的测试,每个分支代表该测试的一个输出,每个叶节点代表存放一个类标号,顶层节点是根节点。

在构造决策树时,使用属性选择度量来选择将元组划分成不同的类的属性。决策树中的许多分枝可能反映训练数据中的噪声或离群点,使用剪枝识别来减去是这种分枝,以提高泛化性。

常用的决策树模型包括ID3、C4.5和CART。它们都采用自上到下递归的分枝方式构造决策树,各算法之间的差别在于创建决策树时如何选择属性和剪枝机制。

 

K最近邻分类

 

K最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值