文章摘自【2020数据质量管理标杆奖项征集作品精选】,本文荣获DQMIS2020第四届数据质量管理国际峰会之“2020数据质量创新论文奖”,论文作者:王建峰。
01 物料数据质量管理现状
- 数据数据存在的质量问题
本文谈到的物料是指企业中所有物资、产品和服务的总和。从某种意义上说,物料是工业企业所占价值最大的一部分。物料数据涉及到企业的设计、研发、采购、仓储、生产、销售、物流、财务等生产经营管理决策的整个价值链的各个环节。因此,物料数据质量的好坏就将影响到采购的合理性、生产的及时性、管理的精确性以及决策的科学性。
在工业企业,物料的质量主要表现在以下几方面:
-
唯一性:物料数据质量的唯一性问题主要体现在物料的一物多码、同码异物现象。
-
完整性:物料数据质量的完整性问题主要体现在物料的关键属性在采购部门、生产部门、仓储部门等业务部门均不全面。
-
准确性:物料数据质量的准确性问题主要体现在物料的关键属性不准确,比如长X宽准确的描述是30mmX40mm,而在不同系统存在3X4、4X3、40X30等现象。
-
一致性:物料数据质量的一致性问题主要体现在物料的多系统相同物料描述不一致。
-
有效性:物料数据质量的有效性问题主要体现在物料的属性值不可用,比如参照的国家标准、行业标准变化了,企业中的应用部门没有及时调整,导致数据不能有效使用。
-
及时性:物料数据质量的及时性问题主要体现在物料不能及时维护,每个系统的物料差别比较大。
图1 数据质量问题的影响
物料数据质量问题对业务经营和企业健康发展将产生严重影响,如图1所示。比如库存量准确度低、结算发生错误、库存资金占有量大、财务审计不合规、采购计划不准确、企业决策失误、客户满意度低等。这些将严重导致企业的精细化管理程度低、物料占有成本巨大、核心竞争力不足和难以持续发展。
物料数据问题产生的原因
在工业企业中,物料数据质量问题按照产生的来源可以分为标准问题、技术问题、流程问题和管理问题四个方面,如图2所示。
图2 数据质量产生的原因
标准问题
标准类问题是由于对物料数据本身的描述标准缺乏,造成理解及其度量的偏差从而出现的数据质量问题。产生这部分数据质量问题的原因主要有:物料元数据描述及理解错误、物料主数据标准缺失、物料属性的特征值不规范、物料的计量单位不统一等。
技术问题
公安部在16个城市试点基础上,在全国推广机动车检验标志电技术类问题是指由于物料数据处理的各技术环节的异常造成的数据质量问题,它产生的直接原因是技术实现上的缺陷。数据质量问题的产生环节主要包括数据创建、数据获取、数据传递、数据装载、数据使用、数据维护等。比如,创建数据默认值使用不当和数据录入的校验规则不当、接口数据漏传、数据清洗算法不完善、维护过程缺乏验证机制等。子化,为机动车所有人、驾驶人以及相关行业和管理部门提供电子证照服务。
流程问题
流程类问题是指由于物料申请、审批、应用流程设置不当造成的数据质量问题,主要来源于数据的创建流程、审批流程、使用流程、维护流程和稽核流程等各环节。比如,操作员数据录入时缺乏审核流程、清洗流程缺乏、调度流程逻辑错误、数据使用缺乏流程管理、缺乏错误数据维护流程、缺乏数据错误反馈流程等。
管理问题
管理类问题是指缺失物料数据管理和运维管理机制方面的原因造成的数据质量问题,如组织管理、人员管理、绩效激励等方面的措施不当导致的管理缺失。比如,缺乏强有力的物料数据管理组织、缺乏物料数据管理的专业人员、针对数据质量问题,没有建立管理数据质量的专门机构、没有明确的数据质量目标、缺少企业数据质量管理办法、缺少物料质量管理的绩效激励制度等。
02 物料数据质量管理方法
物料数据质量管理规划
在工业企业中,物料的数据量巨大,因此,对于物料质量的提升应该采用系统的方法进行整体规划,采用过程的方法实现闭环管理,采用PDCA的方法不断持续提升。如图3所示。