如何评估企业的数据质量

本文探讨了如何评估和改进企业数据质量,强调数据质量对企业业务的影响。数据质量评估涉及数据唯一性、完整性、准确性、一致性、及时性和有效性六个维度。数据质量问题源于业务、技术和管理三个方面,可通过PDCA循环进行持续改进,包括事前预防、事中监控和事后完善。提高全员数据质量意识、制定数据规范和构建数据质量监测平台是关键措施。
摘要由CSDN通过智能技术生成

在如今火爆的数智化时代,企业都在利用大数据创新业务、获得价值;然而,数据能否更好地赋能业务,取决于企业数据质量的好坏。好的数据质量,经过数据分析、挖掘、机器学习等手段,可以更好地辅助业务决策、帮助企业降本增效;差的数据质量,从数据中获得的价值有限,甚至会误导做出错误的业务决策,从而给企业带来灾难性的后果。

那么,一个企业的数据质量如何,如何评估?常见的数据质量问题都有哪些?这些问题是什么原因造成的?

数据质量评估维度

在评价企业数据质量的好坏时,首先需要定义评估的维度,通常较为重要的数据质量维度有以下6个:

  • 数据唯一性: 是指数据唯一,不存在重复记录。即:不会出现一物多码,一码多物的情况。例如:主键唯一性,同一个ID不会重复记录。
  • 数据完整性: 是指数据在创建、处理流转过程中无缺失和遗漏,包括实体完整、属性完整、记录完整和字段值完整。例如:员工的工号不可为空。
  • 数据准确性: 是指真实、准确地记录原始数据,无虚假数据及信息。数据要准确反映其所建模的"真实世界"的实体。例如:在业务系统上填写信息时,手误输错了新车类型信息,造成了数据库里存在的信息与真实世界不一样。
  • 数据一致性: 是指数据是否遵循了统一的规范、是否符合逻辑。例如:同一车型所对应的名称在不同系统中保持一致。
  • 数据及时性: 是指及时记录和传递相关数据,从而满
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值