(五)矩阵

1、方阵的特征值与特征向量

如果满足 Ax=λx A x = λ x ,其中 A A 是方阵,λ是标量值, x x 是向量;则称λ是方阵的特征值, x x 是方阵的特征向量。Ax的集合意义是对向量 x x 进行旋转和伸缩变换,如下图
这里写图片描述
假如

A=[4114]

对于

x3=[11] x 3 = [ 1 1 ]
,则有
Ax3=5[11] A x 3 = 5 [ 1 1 ]

2、特征分解的性质

对于 Axi=λxi A x i = λ x i ,如果所有的特征值都不相同,则相应的所有的特征向量线性无关。此时, A A 可以被对角化

A=VΛV1

其中, V=[x1,...,xn] V = [ x 1 , . . . , x n ] 是一个可逆矩阵; Λ=Diag(λ1,...,λn) Λ = D i a g ( λ 1 , . . . , λ n )

注意:不是所有的方阵都可以对角化,但是对称矩阵可以,而协方差矩阵就是一个对称矩阵。

3、对称矩阵的特征分解

(1)如果一个对称矩阵的特征值不同,则其相应的所有的特征向量正交(即 UUT=UTU=I U U T = U T U = I

A=UΛUT=[u1,...,un]λ1λnuT1uTn=i=1nλiuiuTi A = U Λ U T = [ u 1 , . . . , u n ] [ λ 1 ⋱ λ n ] [ u 1 T ⋮ u n T ] = ∑ i = 1 n λ i u i u i T

(2)对称矩阵的特征值是实数
(3)如果 ARn×n A ∈ R n × n 是一对称矩阵并且矩阵的秩 rankrn r a n k r ≤ n ,则有
|λ1||λ2|...|λr|>λr+1=...=λn=0 | λ 1 | ≥ | λ 2 | ≥ . . . ≥ | λ r | > λ r + 1 = . . . = λ n = 0

4、二次型、半正定矩阵和正定矩阵

(1)二次型
给定矩阵 ARn×n A ∈ R n × n ,函数

xTAx=xixjaij x T A x = ∑ x i x j a i j

称为二次型。
(2)半正定矩阵
如果对于所有 xRn x ∈ R n ,有 xTAx0 x T A x ≥ 0 ,则A为半正定矩阵,此时 λ(A)0 λ ( A ) ≥ 0
(3)正定矩阵
如果对于所有 xRn x ∈ R n , x0 x ≠ 0 ,有 xTAx>0 x T A x > 0 ,则A为正定矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值