大家读完觉得有意义记得关注和点赞!!! 目录 1 图解 “Generative Pre-trained Transformer”(GPT) 1.1 Generative:生成式 1.1.1 可视化 1.1.2 生成式 vs. 判别式(译注) 1.2 Pre-trained:预训练 1.2.1 可视化 1.2.2 预训练 vs. 增量训练(微调) 1.3 Transformer:一类神经网络架构 1.4 小结 2 Transformer 起源与应用 2.1 Attention Is All You Need, Google, 2017,机器翻译 2.2 Generative Transformer 2.3 GPT-2/GPT-3 生成效果(文本续写)预览 2.4 ChatGPT 等交互式大模型 2.5 小结 3 Transformer 数据处理四部曲 3.1 Embedding:分词与向量表示 3.1.1 token 的向量表示 3.1.2 向量表示的直观解释 3.2 Attention:embedding 向量间的语义交流 3.2.1 语义交流 3.2.2 例子:”machine learning model” / “fashion model” 3.3 Feed-forward / MLP:向量之间无交流 3.3.1 针对所有向量做一次性变换