矩阵类(+,*,转置,求逆)

Matrix.h文件

#pragma once
#include <iostream>
#include<math.h>
#include<iomanip>
#include<string.h>
using namespace std;

class Matrix
{
public:
	Matrix();//无参数的构造函数
	Matrix(int a, int b);//有参数的构造函数
	Matrix(const Matrix & one);//拷贝构造函数
	~Matrix();//析构函数
	void Input();//输入
	void operator=(const Matrix &m);//重载=
	friend Matrix operator+(const Matrix &a, const Matrix & b);//重载+
	friend Matrix operator*(const Matrix & a,const Matrix & b);//重载*
	Matrix Transpose();//转置
	Matrix Inverse();//求逆
	void Show();//输出
public:
	int row;//行
	int col;//列
	double **array;//动态数组
};

Matrix.cpp

#include "Matrix.h"


Matrix::Matrix()
{
	cout << "矩阵的行:";
	cin >> row;
	cout << "矩阵的列:";
	cin >> col;
	array = new double*[row];
	for (int i = 0; i < row; i++)//col列
	{
		array[i] = new double[col];
	}
	Input();
}

Matrix::Matrix(int a, int b)
{
	row = a;
	col = b;
	array = new double*[row];
	for (int i = 0; i < row; i++)//每行col列
	{
		array[i] = new double[col];
	}

	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
		{
			array[i][j] = 0;
		}
	}
}

Matrix::Matrix(const Matrix & one)//复制构造函数
{
	row = one.row;
	col = one.col;
	array = new double*[row];
	for (int i = 0; i < row; i++)//col列
	{
		array[i] = new double[col];
	}

	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
		{
			array[i][j] = one.array[i][j];
		}
	}
}

Matrix::~Matrix()
{
	for (int i = 0; i < row; i++)
		delete[]array[i];
	delete[]array;
}

void Matrix::Input()
{
	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
		{
			cin >> array[i][j];
		}
	}
}

void Matrix::operator=(const Matrix & one)
{
	row = one.row;
	col = one.col;
	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
		{
			array[i][j] = one.array[i][j];
		}
	}
}

Matrix operator+(const Matrix & a, const Matrix & b)
{
	if (a.row == b.row&& a.col == b.col)
	{
		Matrix c(a.row, b.col);
		for (int i = 0; i < a.row; i++)
		{
			for (int j = 0; j < a.col; j++)
			{
				c.array[i][j] = a.array[i][j] +
				b.array[i][j];
			}
		}
		return c;
	}
	else
		cout << "矩阵无法相加" << endl;
}
	
Matrix operator*(const Matrix & a, const Matrix & b)
{
	if (a.row == b.col || a.col == b.row)
	{
		if (a.col == b.row)
		{
			//相乘后的矩阵
			Matrix c(a.row, b.col);
			for (int i = 0; i < a.row; i++)
			{
				for (int z = 0; z < b.col; z++)
				{
					for (int j = 0; j < a.col; j++)
					{
						c.array[i][z] = c.array[i][z] + a.array[i][j] * b.array[j][z];
					}
				}
			}
			return c;
		}
		else if (a.row == b.col)
		{
			//相乘后的矩阵
			Matrix c(a.row, b.col);
			for (int i = 0; i < b.row; i++)
			{
				for (int z = 0; z < a.col; z++)
				{
					for (int j = 0; j < b.col; j++)
					{
						c.array[i][z] = c.array[i][z] + b.array[i][j] * a.array[j][z];
					}
				}
			}
			return c;
		}
	}
	else
		cout << "两矩阵无法相乘" << endl;
}

Matrix Matrix::Transpose()
{
	//转置后的矩阵
	Matrix b(col, row);
	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
			b.array[j][i] = array[i][j];
	}
	return b;
}

Matrix Matrix::Inverse()
{
	int i, j, n, test;
	Matrix a(row, col);
	for (i = 0; i < row; i++)
	{
		for (j = 0; j < col; j++)
		{
			a.array[i][j] = array[i][j];
		}
	}
	//单位矩阵
	Matrix b(row, col);
	for (i = 0; i < row; i++)
	{
		for (j = 0; j < col; j++)
		{
			if (i == j)
				b.array[i][j] = 1;
			else
				b.array[i][j] = 0;
		}
	}

	//求逆--求逆矩阵所做的所有步骤,单位矩阵都做一遍
	int r = 0, c = 0;
	double nu, num;
	n = row;
	//原始的求逆矩阵有一整行0,或一整列0.后面都不用做了。
	for (i = 0; i < n; i++)//有一行全为零,矩阵不进行满秩和求逆步骤
	{
		r = 0;
		for (int j = 0; j < n; j++)
		{
			if (a.array[i][j] == 0)
			{
				r = r + 1;
			}
		}
		if (r == n)
			break;
	}
	for (j = 0; j < n; j++)//有一列全为零,矩阵不进行满秩和求逆步骤
	{
		c = 0;
		for (i = 0; i < n; i++)
		{
			if (a.array[i][j] == 0)
			{
				c = c + 1;
			}
		}
		if (c == n)
			break;
	}

	//先判断是否满秩,满秩则求逆
	if (r != n && c != n)//没有一行或一列都为0的情况
	{
		i = 0;
		j = 0;
		//初等行变换,变成阶梯矩阵
		for (test = 0; test < n; test++)//test表示主元所在的行,列。
		{
			r = test, c = test;
			//找每一列从第test行往下第一个不为0的当主元
			for (; a.array[r][c] == 0; r++)
			{
				if (r == n - 1)//防止指针出界
					break;
			}
			for (j = 0, c = 0; j < n; j++)//使主元移动到主对角线上
			{
				num = a.array[r][c];
				nu = a.array[test][j];
				a.array[test][j] = num;
				a.array[r][c] = nu;

				num = b.array[r][c];
				nu = b.array[test][j];
				b.array[test][j] = num;
				b.array[r][c] = nu;

				c++;
			}

			//主元所在列的数,主元以下的都要变成0
			for (i = test; i < n; i++)
			{
				j = test;
				if (i == j)//主元往下
					i++;
				if (i == n)//防止指针出界
					break;
				num = a.array[i][j] / a.array[test][j];

				for (j = 0; j < n; j++)
				{
					a.array[i][j] = a.array[i][j] - a.array[test][j] * num;

					b.array[i][j] = b.array[i][j] - b.array[test][j] * num;
				}
			}
		}

		//看是否满秩
		for (i = 0; i < n; i++)//有一行全为零,矩阵不满秩
		{
			r = 0;
			for (int j = 0; j < n; j++)
			{
				if (a.array[i][j] == 0)
				{
					r = r + 1;
				}
			}
			if (r == n)
				break;
		}
		for (j = 0; j < n; j++)//有一列全为零,矩阵不满秩
		{
			c = 0;
			for (i = 0; i < n; i++)
			{
				if (a.array[i][j] == 0)
				{
					c = c + 1;
				}
			}
			if (c == n)
				break;
		}

		//如果满秩,则可以进行求逆。(此时求逆阵,单位阵已经经过了初等行变换)
		if (r != n && c != n)//没有一行或一列都为0的情况
		{
			for (i = 0, j = 0, test = 0; test < n; test++)//test表示主元所在的行,列。
			{
				i = test, j = test;
				r = test, c = test;
				num = a.array[i][j];
				for (j = 0; j < n; j++)//所在行除以主元本身,主元变成1
				{
					a.array[i][j] = a.array[i][j] / num;

					b.array[i][j] = b.array[i][j] / num;
				}
				for (i = 0; i < test; i++)//主元所在列的数,主元以上的变成0
				{
					j = test;
					num = a.array[i][j];
					for (j = 0; j < n; j++)
					{
						a.array[i][j] = a.array[i][j] - a.array[test][j] * num;

						b.array[i][j] = b.array[i][j] - b.array[test][j] * num;
					}
				}
			}
			return b;
		}
		else
		{
			cout << "矩阵不可逆" << endl;
		}
	}
	else
	{
		cout << "矩阵不可逆" << endl;
	}
}

void Matrix::Show()
{
	for (int i = 0; i < row; i++)
	{
		for (int j = 0; j < col; j++)
		{
			if (fabs(array[i][j]) < 10e-10)
			{
				array[i][j] = 0;

			}
			cout << fixed << setprecision(4) << array[i][j] << ",";
		}
		cout << endl;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值