基于MATLAB的3-PUU并联机构工作空间仿真分析

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

        3-PUU 并联机构是一种典型的空间并联机构,在机器人、精密定位设备等诸多领域有着广泛的应用。对其工作空间进行准确分析,有助于了解机构的运动范围和性能,从而为机构的设计、控制和应用提供重要依据。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

.....................................................................
for Z=-800:step0:800%%沿着Z轴扫描   
    Z
    [X,Y]       = pol2cart(theta,rho);
	for Theta=step1:step1:L1-L1s
		for Rho=step2:step2:L2-L2s
			X0=X(Rho/step2+1,Theta/step1+1);
			Y0=Y(Rho/step2+1,Theta/step1+1);
			[d]=PUU3_Structure(X0,Y0,Z); 
			if d>0
			   Zu(Rho/step2+1,Theta/step1+1)=Z;
			end
		end
    end
    
	for i=1:m                                       
		for j=1:n                                   
			if Zu(i,j)==1e6                    
			   Zu(i,j)= NaN;
			   X(i,j) = NaN;
			   Y(i,j) = NaN;
			end
		end                                         
    end
    surf(X,Y,Zu);               
end
xlabel('X/mm');
ylabel('Y/mm');
zlabel('Z/mm');
view([150,36]); 
08_083m

4.系统原理简介

        3-PUU 并联机构主要由动平台、静平台和三条相同的 PUU 支链组成。其中,“P” 代表移动副(Prismatic joint),“U” 代表虎克铰(Universal joint)。每条支链一端通过虎克铰连接在静平台上,另一端通过虎克铰连接在动平台上,中间是移动副,移动副的运动实现了动平台的位置和姿态变化。

       工作空间是指在不考虑其他约束(如奇异位形、关节物理限制等)的情况下,动平台能够到达的所有位置和姿态的集合。根据应用需求和分析重点,工作空间可以分为位置工作空间(仅考虑动平台中心位置的可达范围)和姿态 - 位置工作空间(同时考虑动平台的位置和姿态的可达范围)。

       工作空间可以通过三维图形(如点云图、边界曲面图等)进行直观表示。对于位置工作空间,可以在三维坐标系中绘制出所有可达位置点的集合;对于姿态 - 位置工作空间,由于姿态的表示相对复杂(通常需要用旋转矩阵或欧拉角等方式表示),可以采用分层表示(例如,固定某个姿态参数,绘制位置工作空间,然后改变姿态参数,绘制多个位置工作空间来展示姿态 - 位置工作空间)。

       工作空间的形状也会影响机构的应用。例如,规则的球形或立方体形状的工作空间可能更有利于某些精密定位任务,而不规则的形状可能在某些方向上的可达性有限。可以通过计算形状因子(如长宽高比例、对称性等)来评估工作空间的形状特性。

       在一些特殊情况下,对于 3 - PUU 并联机构的工作空间可以通过解析方法得到近似的结果。例如,当机构的结构具有一定的对称性,并且支链的运动范围相对简单时,可以通过几何分析和运动学简化来推导工作空间的边界方程。

5.完整工程文件

v

v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可编程芯片开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值