3、Triads
Having described the model in a non-rigorous fashion , it is time to state it more precisely. The procedure is this :we will list all the possible triads that could occur in a graph with M , A , and N pair relations , Postulate that some of them do not exist , and then show that the structure discussed above is implied by the postulates .
在以非严格的方式描述了模型之后,现在是时候更精确地说明它了。过程如下:我们将列出所有可能出现在具有M、A和N型对关系的图形中的三元组,假设其中一些不存在,然后证明上述结构是由假设隐含的。
We begin by counting the number of M , A and N sides of A triad , using a three digit code in which the first digit is the number of M edges , the second is the number of A edges , andt he third is the number of N edges . Thus , a 3-0-0 triad has three M edges ;a 1-1-1 triad has one M edge , one A edge , and one N edge . There are ten possibilities : 3-0-0 , 2-0-1 ,1-2-0,1-0-2 , 1-1-1,0-1-2 , 0-3-0 , 0-2-1 , and 0-0-3 . Within such types , triads may vary structurally if there are A Relationships .depending on the “directions of the arrows.” These sub-types will be defined later and identified by letters following the numerical code , e.g. 0-3-0-a , 0-3-0-b
Figure 2 is a catalogue of the possible triads in thisclassification .
首先,我们使用三位代码表示一个三元组的M、A和N边的数量,其中第一位是M型边的数目,第二位是A型边的数目,第三位是N型边的数量。因此,3-0-0三元组有三条M型边;1-1-1三元组有一条M型边、一条A型边和一条N型边。有十种可能性:3-0-0、2-0-1、1-2-0、1-0-2、1-1、0-1-2、0-3-0、0-2-1和0-0-3。在这些类型中,如果存在关系,三元组在结构上可能会有所不同。取决于“箭头的方向”。这些子类型将在后面定义,并用数字代码后面的字母标识,例如0-3.0-a,0-3-0-b
图2是该分类中可能的三元组目录。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来502284517227162.png
Down the vertical axis we see the 10 possible triad types when direction of A relations is ignored . In the middle of the list we see the three types ( 1-2-0 , 0-2-1 , 0-3-0 , 1-1-1 )direction of the A lines makes a difference , and we further note that these have been subdivided into subtypes "a"and “b”. we also see a horisontal line below 0-3-0 and a vertical line between a " and " b " .
沿着纵轴,我们可以看到当A型关系的方向被忽略时,共有10种可能的三元组类型。在列表的中间,我们看到A线的三种类型(1-2-0,0-2-1,0-3-0,1-1-1)方向有所不同,我们进一步注意到这些被细分为子类型“a”和“b”。我们还看到0-3-0下方的水平线和a”和“b”之间的垂直线。
In a nutshell,the model states that triads below the horizontal line and to the right of the vertical line never exist, or rather than when they are absent, the total structure will have all of the marvelous properties discussed above.
简而言之,该模型表明水平线下方和垂直线右侧的三元组永远不存在,或者当它们不存在时,总结构将具有上面讨论的所有奇妙特性。
Let us examine each triad type , beginning with the permissable case,Again, we are notgiving formalproofs but we will soon.
让我们从允许的情况开始检查每一种三元组类型,再次,我们不会给出形式证据,但很快就会给出。
Triads of type 3-0-0 are certainly permissable as they must be three persons in the same clique at the samelevel .
Triads of type 1-0-2 consist of two persons,i and j, in the same clique at one level, and a third, k, in a different clique at that level.
Triads of type 0-0-3 consist of persons from three different cliques at the same level.
Triads of type 1-2-0-a consist of two persons,i and j in the same clique at the same level, and a third person, k, in a higher or lower level.
Triads of type 0-2-1-a consist of two persons,i and j in different cliques at the same level, and a third person, k in a higher or lower level.
In 2-1-0 triads, i and j are in the same clique at the same level.The M relation between i and k implies that k is also in that clique, but the A relation between i and k implies that k is in a higher level.
In 2-0-1 triads, i and j are in the same clique.The M relation between i and k implies that k is also in that clique, but the N relation between k and j implies that k is in a different clique.(These are the well-known nonclusterable triads in balance theory.)
In 0-1-2 triads, the two N relations imply that i, j, and k are all in the same level, although in different cliques;but the A relation between j and k implies that k is in a higher level.
3-0-0类型的三元组当然是允许的,因为他们必须是同一层级同一团的三个人。
1-0-2型三元组包括两个人,i和j,在同一层级属于同一团,第三个人,k,在该层级属于不同团。
0-0-3型三元组由来自同一层级三个不同团的人组成。
1-2-0-a型三元组由两人组成,一人在同一团中处于同一层级,另一人在较高或较低层级,即k。
0-2-1-a型三元组由两个人组成,i和j在同一层级的不同团中,第三个人k在较高或较低层级。
在2-1-0三元组中,i和j处于同一层级的同一团中。i和k之间的M关系意味着k也在该团中,但i和k间的A关系意味着k处于更高的层级。
在2-0-1三元组中,i和j属于同一个团。i和k之间的M关系意味着k也在该团中,但k和j之间的N关系意味着k在不同的团中。(这些是平衡理论中众所周知的不可聚集的三元组。)
在0-1-2三元组中,两个N关系意味着i、j和k都处于同一层级,尽管处于不同的团中;但是j和k之间的A关系意味着k处于更高的层级。
Triads of type 0-3-0-a consist of persons from three different levels such that k is the highest, i is the lowest, and j is intermediate.We now explain why none of the remaining triads can be assigned to cliques and levels without some contradiction.
In 1-2-0-b triads, i and j are in the same clique at the same level, but k is above one and below the other, a contradiction
In 0-2-1-b triads, i and j are from different cliques at the same level, but k is above one and below the other, a contradiction.
In 0-3-0-b triads, we see the notorious “cyclic triads” that can not be ordered.The arrow from k to i,for example, implies that i is above k, but the directed path i to l to k implies the opposite.
In 1-1-1 triads (regardless of the direction of the A relation) i and j, must be placed in the same clique at the same level, but the directed line between i and k implies that k is in a different level while the N relationship implies that k is in the same level, a contradiction.
0-3-0-a型三人组由三个不同层级的人组成,其中k最高,i最低,j居中。我们现在解释为什么剩余的三元组中没有一个可以毫无矛盾地分配到团和层级。(最底层的逻辑是:A型连接的两个节点处于不同的层级,N型连接的两个节点处于同一个层级但不是同一个团,M型连接的两个节点处于同一个层级、同一个团)
在1-2-0-b三元组中,i和j处于同一层级的同一团中,但k高于一个,低于另一个,这是一个矛盾
在0-2-1-b三元组中,i和j来自同一层级的不同团,但k高于一个,低于另一个,这是一个矛盾。
在0-3-0-b三元组中,我们看到了臭名昭著的无法排序的“循环三元组”。例如,从k到i的箭头意味着i高于k,但有向路径i到l到k意味着相反。
在1-1-1三元组中(无论关系的方向如何),i和j必须放在同一层级的同一团中,但i和k之间的有向线意味着k处于不同层级,而N关系意味着k位于同一层级,这是一个矛盾。
Having seen that any of the perrissable triads can be assigned to levels and cliques without a contradiction, but none of the other triads can, we are ready to show that if all the triads are consistent, the entire graph must be consistent.
We want to prove the following:
已经看到任何可允许的三元组都可以无矛盾地分配给层级和团,但其他三元组都不能,我们准备证明如果所有三元组都是一致的,则整个图必须是一致的。我们要证明以下几点:
In a graph with M, A and N relationships, the points can be arranged simultaneously into disjoint subsets called levels and disjoint sub-subsets called cliques, such that:
- a) points are in different levels if and only if they are connected by A relationships (and consequently in the same level if they are connected by M or N relations)
- b) points are in the same clique (and at the same level as a consequence of “a”) if and only if they are connected by M relations (and consequently in different cliques at the same level if they are connected by N relations)
- c) the levels form a complete order…if and only if the graph has no triads of types 2-1-0 0-1-2, 1-1-1, 2-0-1, 1-2-0-b, 0-2-1-b, or 0-3-0-b.
在具有M、A和N关系的图中,点可以同时排列为称为层级的不相交子集和称为团的不相交子子集,这样:
a) 当且仅当,点位于不同的层级它们由 A型关系连接(如果它们由 M 或 N 关系连接,则在同一层级)
b) 当且仅当由 M 型关系连接,它们位于同一团中(并且由于“a”而处于同一层级)(如果它们由 N 型关系连接,则因此在同一层级的不同团中)
c)这些层级形成一个完整的顺序…当且仅当图没有2-1-0、0-1-2、1-1-1、2-0-1、1-2-0-b、0-2-1-b 或 0-3-0-b类型三元组
The argument draws heavily upon the theorem of clusterability and is influenced by the notion of duo-balance.
We begin by altering the notation of the lines (edges) so that M and N relations are “positive” and A relations are "negative.“Inspection of Figure 2 reveals that there are no permissable triads with two “positive” and one “negative” line (i.e. 2-1-0, 0-1-2, and 1-1-1 triads are not permitted).From the clusterability theorem it follows that the points can be arranged in unique disjoint subsets such that all lines within subsets are “positive” (M or N) and all lines between subsets are “negative” (A).We call these subsets levels and note that we have satisfied “a” above.
该论点在很大程度上借鉴了可聚类性定理,并受到双重平衡概念的影响。
我们首先改变线(边)的符号,使 M 和 N 型关系是“正的”,而 A 型关系是“负的”。对图 2 的检查表明,不存在具有两条“正”和一条“负”线的允许三元组(即不允许 2-1-0、0-1-2 和 1-1-1 三元组)。根据聚类性定理,可以将点排列在唯一的不相交子集中,使得子集内的所有边都是“正的”(M 或 N),子集之间的所有边都是“负的”(A)。我们将这些子集称为层级,并注意我们已经满足了上面的“a”。
Next we consider points and lines within a level.Each level is a graph consisting of points connected By M or N lines.The clusterability theorem tell us that unique disjoint subsets will emerge if and only if there are no triads with two “positive” and one “negative” line.If we call M positive and N negative, the fact that 2-0-1 triads are not permissable implies that levels are internally clusterable, which satisfies “b” above.
接下来我们考虑层级内的点和边。每个层级都是由 M 或 N 型边连接的点组成的图。聚类性定理告诉我们,当且仅当不存在具有两个”正“边和一个“负”边时,将出现独立的不相交子集。如果我们将 M 称为正数、 N为负数,则不允许 2-0-1 三元组这一事实意味着级别是内部可聚类的,这满足上面的“b”。
Finally, we note in Figure 2 that any pair of points connected by an M or N line (i.e. points within the same level) and connected to a third point by an A relation have A relations identical in direction (see 1-2-0-a and 0-2-1-a in Figure 2).This enables us to condense the graph so that each level becomes a single point.That is, anything we show for the condensed graph must be true for each point within a given level.The condensed graph is complete, directed, and a-cyclic, i.e. a transitive tournament.This satisfies “c” above and completes the proof
最后,我们在图 2 中注意到,任何由 M 或 N 线连接并通过 A 关系连接到第三个点的点对具有方向相同的 A 关系(参见 1-2-0图 2 中的 a 和 0-2-1-a)。这使我们能够压缩图形,使每个层级都成为一个点。也就是说,我们为压缩图显示的任何内容对于给定层级内的每个点都必须是正确的。浓缩图是完全的、有向的和无环的,即传递竞赛图。这满足上面的“c”并完成证明