Intersection over Union

Intersection over Union

IoU代码实现方式:

代码块

代码块语法遵循标准markdown代码,例如:

# import the necessary packages
from collections import namedtuple
import numpy as np
import cv2

# define the `Detection` object
Detection = namedtuple("Detection", ["image_path", "gt", "pred"])

def bb_intersection_over_union(boxA, boxB):
    # determine the (x, y)-coordinates of the intersection rectangle
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])

    # compute the area of intersection rectangle
    interArea = (xB - xA + 1) * (yB - yA + 1)

    # compute the area of both the prediction and ground-truth
    # rectangles
    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

    # compute the intersection over union by taking the intersection
    # area and dividing it by the sum of prediction + ground-truth
    # areas - the interesection area
    iou = interArea / float(boxAArea + boxBArea - interArea)

    # return the intersection over union value
    return iou

# define the list of example detections
examples = [
    Detection("./car/image_0002.jpg", [39, 63, 203, 112], [54, 66, 198, 114]),
    Detection("./car/image_0016.jpg", [49, 75, 203, 125], [42, 78, 186, 126]),
    Detection("./car/image_0075.jpg", [31, 69, 201, 125], [18, 63, 235, 135]),
    Detection("./car/image_0090.jpg", [50, 72, 197, 121], [54, 72, 198, 120]),
    Detection("./car/image_0120.jpg", [35, 51, 196, 110], [36, 60, 180, 108])]

# loop over the example detections
for detection in examples:
    # load the image
    image = cv2.imread(detection.image_path)

    # draw the ground-truth bounding box along with the predicted
    # bounding box
    cv2.rectangle(image, tuple(detection.gt[:2]), 
        tuple(detection.gt[2:]), (0, 255, 0), 2)
    cv2.rectangle(image, tuple(detection.pred[:2]), 
        tuple(detection.pred[2:]), (0, 0, 255), 2)

    # compute the intersection over union and display it
    iou = bb_intersection_over_union(detection.gt, detection.pred)
    cv2.putText(image, "IoU: {:.4f}".format(iou), (10, 30),
        cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
    print("{}: {:.4f}".format(detection.image_path, iou))

    # show the output image
    cv2.imshow("Image", image)
    cv2.waitKey(0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值