中国剩余定理:
设m和n是互素的两个正整数,并设a和b为整数,其中0<= a <= m-1以及 0<= b <= n-1。于是,存在正整数x,使得x除以m的余数为a,并且x除以n的余数为b;即x可以写成x= pm + a的同时又可写成x = qn + b的形式,这里,p和q是两个整数。
证明:我们考虑n个整数,
a,m+a,2m+a,3m+a...,(n-1)m+a
这些整数中的每一个除以m都余a.设其中两个除以n有相同的余数r。令这两个数为im+a 和 jm+a ,其中
0<= i < j <= n-1。于是,存在两个整数qi和qj,使得
im + a = qi + r
且
jm+a = qj + r
第二个方程减去第一个方程,得( j - i )m = ( qi - qj )n
上面的方程告诉我们,n是 (j - i)m的因子。因为n和m除1之外没有其他公因子,因此n只能使j - i 的因子。然而,
0 <= i < j <= n-1,意味着 0 < j - i <= n-1也就说n不可能是j- i的因子。该矛盾产生于我们的假设:这n个数中的每一个数 a,m+a,2m+a,3m+a...,(n-1)m+a中有两个除以n会有相同余数。因此我们断言,这n个数中的每一个除以n都有不同的余数。根据鸽巢原理,n个数0,1,2...,n-1中的每一个都要作为余数出现;特别是b也是如此。设p为整数,满足
0 <= p <= n-1,使得数x = pm + a除以n余数为b。则对于某个整数q,有
x = qn + b
因此,x = pm +a 和x = qn + b,从而x具有所要求的性质。