LightFR: Lightweight Federated Recommendation with Privacy-preserving Matrix Factorization

LightFR: Lightweight Federated Recommendation with Privacy-preserving Matrix Factorization

完整代码解读以及视频讲解请移步链接

ACM TOIS 2023 CCF-A

论文试图解决一个什么问题

本论文试图解决以下问题:

  • 开发一种轻量级且隐私保护的联邦推荐系统(FRS),以降低资源成本并提高隐私保护能力。
  • 通过学习哈希技术获得用户和项目的二进制表示,从而有效解决效率和隐私问题。
  • 设计一种在服务器和客户端之间高效的联邦离散算法,以嵌入用户偏好到离散汉明空间,同时降低服务器和客户端的资源利用,保护用户隐私。

论文提出了一种名为LightFR的轻量级联邦推荐方法,它通过矩阵分解和隐私保护的学习哈希技术实现轻量级、高效且安全的推荐。

这篇文章的主要研究方法

这篇文章的主要研究方法是提出一种名为LightFR的轻量级联邦推荐系统,它结合了矩阵分解和学习哈希技术,具有较低的存储、通信开销和推理时间,同时增强了用户隐私保护能力。LightFR通过在服务器和客户端生成高质量的二进制代码,有效解决了联邦设置下的离散优化问题。作者还设计了一种高效的联邦离散算法,以在服务器和客户端之间进行协作优化,同时降低资源利用率和保护用户隐私。

这个领域目前存在什么问题,以及这篇文章需要解决什么问题?

这个领域目前存在的问题有:

现有的联邦推荐系统(FRS)在资源效率和隐私保护方面存在挑战。
高成本的资源消耗和通信开销限制了现有方法在大规模推荐场景中的应用。
提高用户隐私保护的能力对于现实世界的FRS至关重要,但现有方法在这方面的考虑不足。

这篇文章需要解决的问题是:

开发一种轻量级且隐私保护的FRS,同时具有低成本资源消耗和提高隐私保护能力。
通过学习哈希技术获得用户和项目的二进制表示,从而有效解决联邦设置中的离散优化问题。
设计一个高效的联邦离散算法,以在服务器和客户端之间嵌入用户偏好,同时降低资源利用和保护隐私。

目前已经有的工作在解决该领域的问题上的不足之处?

效率和隐私问题:现有的联邦推荐系统(FRS)对于效率和隐私方面的考虑并不充分。在大规模推荐场景中,资源消耗和推理时间成为主要挑战。
高度依赖实数表示:现有方法大多基于实数表示,这可能导致较高的资源消耗和隐私泄露风险。
传输原始模型参数:一些现有的FRS方法在服务器和客户端之间传输原始的模型参数,这可能导致用户隐私信息泄露。
缺乏轻量级模型:现有的FRS方法通常需要在资源受限的客户端上部署较大的模型,这可能导致效率和隐私保护方面的问题。
局限于特定场景:现有方法通常针对特定场景设计,难以广泛应用于其他场景。例如,一些方法仅适用于隐式反馈数据,而其他方法则仅适用于显式反馈数据。

模型的鲁棒性怎么样?

模型的鲁棒性表现良好。在实验中,LightFR在多个指标上优于其他联邦推荐方法,如推荐准确性、资源节省和数据隐私。此外,通过在实际数据上进行不同的实验,研究发现该方法在面对不同类型的攻击时具有较好的鲁棒性。总的来说,LightFR在保护用户隐私的同时,实现了高效的联邦推荐。

模型的实验是如何设计的?

实验设计包括以下几个方面:
数据集:使用四个不同规模的公开数据集(MovieLens-1M、Filmtrust、Douban-Movie 和 Ciao)进行实验分析,以全面反映模型性能。

评估指标:使用两个常用的评估指标,即 Hit Ratio(HR)和 Normalized Discounted Cumulative Gain(NDCG),以评估模型性能和验证其有效性。
实验方法
对比中心化经典矩阵分解模型(如PMF、SVD++和DDL)和联邦矩阵分解基线(如FederatedMF)与提出的 LightFR 模型。
分析不同超参数(如二进制编码长度 f、权衡参数 λ 和选定客户比例 p)对性能的影响。

总结:实验结果表明,LightFR 模型在保持较高推荐精度的同时,具有较高的存储/通信效率、推理效率和隐私保护能力。因此,LightFR 是一种有效且隐私保护的轻量级联邦推荐方法。

本文最核心的创新点:

本文的最核心创新点包括以下几点:

  1. 提出了一种轻量级的联邦推荐系统(LightFR),它通过学习哈希技术获得用户和项目的二进制表示,从而有效解决资源效率和隐私保护问题。
  2. 设计了一种高效的联邦离散算法,用于在服务器和客户端之间进行训练离散参数,实现了在保护隐私的方式下提高资源效率。
  3. 从理论角度证明了LightFR在存储/通信效率、推理效率和隐私保护方面的优越性。
  4. 通过大量实验证明,LightFR在推荐准确性、资源节约和数据隐私方面明显优于现有的联邦推荐方法。

这个代码中,客户端和服务端之间是怎么进行梯度更新和传输的呢?

客户端的梯度更新
1.更新过程:

  • 在 LightFR 类的 train_model 方法中,首先从所有客户端中随机选择一部分进行训练(基于
    self.configs.client_ratio)。对于每个选中的客户端,创建一个 Client 实例,并使用 client_update 方法更新客户端的哈希表示(client.bu)。

2.client_update方法:
这个方法是在 Client 类中定义的。它对客户端的哈希表示进行迭代更新,以更好地反映用户的偏好和行为。
更新是基于用户的实际评分数据和全局项目特征(client.D)。
更新过程涉及计算预测误差、应用正则化项,并使用符号函数(np.sign)调整哈希码的每一位。

客户端与服务端的梯度传输

客户端到服务端:

  • 在 LightFR 的 train_model 方法中,客户端完成哈希表示的更新后,这些更新信息(哈希表示)在内存中保留。
  • 代码中没有直接显示客户端将梯度信息发送到服务端的过程。但从逻辑上讲,在一个实际的联邦学习环境中,客户端会将其更新的哈希表示或相关梯度信息发送给服务端。

2.服务端更新

  • 服务端根据收到的客户端信息更新全局项目特征(self.D)。
  • 服务端更新涉及遍历所有项目并对它们的特征进行批量更新,这可能是基于从多个客户端聚合的信息。

3.损失计算和反馈:
在每轮更新后,服务端计算整体损失并可能根据此调整全局更新策略。
损失信息可以反馈给客户端,以指导后续的本地更新。

总结

在提供的代码中,客户端使用其本地数据独立更新哈希表示。这些更新在内存中保留,并可以被服务端用来更新全局模型。尽管代码中没有直接显示客户端和服务端之间的通信过程,但在一个完整的联邦学习系统中,客户端的更新通常会被发送到服务端,服务端则根据这些信息进行全局模型的更新。这样的设计旨在优化模型的整体性能,同时保护每个客户端的数据隐私。

  • 24
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值