关于e的等式及相关证明

e 的定义式是一切的起点:

e=limn(1+1n)n

据此我们来看这样一个关于 e 的近似值(本质仍然是上式):

e(1+947×6)3285

二者有着极高的接近度;

最美丽的数学公式——Euler Identity

eiπ+1=0

万变不离其宗的泰勒展开

ex=n=0xnn!

证明 limn(1+1n)n=e

limn(1+1n)n=limn[(11n)n]1=limn1(11n)n=limn(nn1)n=limn(1+1n1)n=e

证明 limn(11n)n=e (e和全体自然数之间的关系)

limn(11n)n=limn[(1+1n)n]1=limn[(1+1n)n]1=1e

证明 e=10!+11!+12!+13!+

e=limn(1+1n)n=(n0)+(n1)1n+(n2)(1n)2+(n3)(1n)3+=1+nn+12!nnn1n+13!nnn1nn2n+=limn(1+nn+12!nnn1n+13!nnn1nn2n+)=10!+11!+12!+13!+

另有一个等式:

112+1314+=ln2

展开 limn(11n)n=1e

1e=limn(11n)n=(n0)+(n1)(1)1(1n)+(n2)(1)2(1n)2+(n3)(1)3(1n)3+=10!11!+12!13!+

统一于泰勒展开

ex=n=0xnn!

连分数

e=2+11+12+23+34+45+

自然数的全体是 e 的基因。

与调和级数

γ=limn(n=11nlnn)0.5772156649

指数函数的微分不变性

首先我们考虑这样一个问题,什么样的函数在微分运算(号称恶魔运算:照妖镜?)之后还能保持原型:

f(x)=f(x)?

给定这样一个函数:

f(x)=1+x+x22!+x33!+x44!+

对其进行求导,得:
f(x)=0+1+x+x22!+x33!+x44!+

观察 f(x) 有一个特点,后一项的导数是前一项。

最终符合条件 f(x)=f(x) 的函数是:

f(x)=1+x+x22!+x33!++xnn!+=n=0xnn!

也即满足 (xnn!)=xn1(n1)!

这里我们可进行 f(x) ex 关系的论证:
已知 e=limn(1+1n)n ,可得:

e2=limn(1+1n)2n=limn(1+22n)2n=limn(1+2n)n

(1+1n)n=1+(n1)1n+(n2)1n2+(n3)1n3+=1+11+12!+13!+ 可知:

(1+2n)n==1+(n1)2n+(n2)2n2+(n3)2n3+1+112+12!22+13!23+

有理由推论 ex=1+x+12!x2+13!x3+

我们再来看欧拉给出的 ex 的定义:

ex=limn(1+xn)n

自然指数函数和它的导数恒等 (ex)=ex ,这实际上是指数函数所有性质的来源,并且在的应用中之所以重要的根本原因。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值