高等数学入门教程 — 自然底数e

一、自然底数的定义

在极限章节的第一节中,我们讨论了银行利息问题,发现函数 f ( x ) = ( 1 + 1 / x ) x f(x)=(1+1/x)^x f(x)=(1+1/x)x x → + ∞ x\rightarrow+\infty x+趋近于一个约为 2.7 2.7 2.7的数。我们定义这个数为自然底数,符号记作 e e e,即 e = lim ⁡ x → + ∞ ( 1 + 1 x ) x = lim ⁡ x → 0 + ( 1 + x ) 1 / x e=\lim_{x\rightarrow+\infty}{\left(1+\frac1x\right)^x}=\lim_{ {x\rightarrow0}^+}{(1+x)^{1/x}} e=x+lim(1+x1)x=x0+lim(1+x)1/x这就是自然底数的定义。

有了自然底数便有自然对数 ln ⁡ \ln ln ln ⁡ x = log ⁡ e x \ln x=\log_ex lnx=logex

二、等价法中的自然底数

在极限章节的等价法中,我们提到 e x − 1 e^x-1 ex1 ln ⁡ ( x + 1 ) \ln{(x+1)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值