一、自然底数的定义
在极限章节的第一节中,我们讨论了银行利息问题,发现函数 f ( x ) = ( 1 + 1 / x ) x f(x)=(1+1/x)^x f(x)=(1+1/x)x在 x → + ∞ x\rightarrow+\infty x→+∞趋近于一个约为 2.7 2.7 2.7的数。我们定义这个数为自然底数,符号记作 e e e,即 e = lim x → + ∞ ( 1 + 1 x ) x = lim x → 0 + ( 1 + x ) 1 / x e=\lim_{x\rightarrow+\infty}{\left(1+\frac1x\right)^x}=\lim_{ {x\rightarrow0}^+}{(1+x)^{1/x}} e=x→+∞lim(1+x1)x=x→0+lim(1+x)1/x这就是自然底数的定义。
有了自然底数便有自然对数 ln \ln ln: ln x = log e x \ln x=\log_ex lnx=logex
二、等价法中的自然底数
在极限章节的等价法中,我们提到 e x − 1 e^x-1 ex−1与 ln ( x + 1 ) \ln{(x+1)}